Chapter 5
 Chemical Accounting: Mass and Volume Relationships

Which of the following is not properly balanced and how would it be written correctly?
a. $\mathrm{P}_{4}+6 \mathrm{Cl}_{2} \rightarrow 4 \mathrm{PCl}_{3}$
b. $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}$
c. $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{HBr} \rightarrow \mathrm{CaBr}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
d. $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

Which of the following is not properly balanced and how would it be written correctly?
a. $\mathrm{P}_{4}+6 \mathrm{Cl}_{2} \rightarrow 4 \mathrm{PCl}_{3}$
b. $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}$ not balanced $2 \mathrm{~N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}$ okay
c. $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{HBr} \rightarrow \mathrm{CaBr}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
d. $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

At a given temperature and pressure, how many liters of $\mathrm{NH}_{3}(\mathrm{~g})$ are produced according to the following:

$$
\begin{array}{ccc}
3 \mathrm{H}_{2}(\mathrm{~g}) & +\underset{2}{\mathrm{~N}_{2}(\mathrm{~g})} \rightarrow \underset{2.0 \mathrm{~L}}{\rightarrow .0 \mathrm{~L}} \underset{?}{2 \mathrm{NH}_{3}(\mathrm{~g})} \\
\hline
\end{array}
$$

a. $\quad 0.5 \mathrm{~L}$
b. $\quad 1.0 \mathrm{~L}$
c. $\quad 2.0 \mathrm{~L}$
d. 4.0 L
e. $\quad 6.0 \mathrm{~L}$

At a given temperature and pressure, how many liters of $\mathrm{NH}_{3}(\mathrm{~g})$ are produced according to the following:

$$
\begin{array}{ccc}
3 \mathrm{H}_{2}(\mathrm{~g})+ & \mathrm{N}_{2}(\mathrm{~g}) & \rightarrow \\
6.0 \mathrm{~L} & 2.0 \mathrm{~L} & \\
2.0 \mathrm{~L}
\end{array}
$$

Copyright © 2010 Pearson
Education, Inc.

How many carbon atoms are in the one formula unit of $\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NH}_{3}\right)_{2} \mathrm{CO}_{3}$?

a. 3
b. 4
c. 5
d. 6
e. 7

How many carbon atoms are in the one formula unit of $\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NH}_{3}\right)_{2} \mathrm{CO}_{3}$?

$$
\begin{array}{ll}
\text { a. } & 3 \\
\text { b. } & 4 \\
\text { c. } & 5 \\
\text { d. } & 6 \\
\text { e. } & 7
\end{array}
$$

What is the mass in grams of 2.5 moles of ammonia, NH_{3} ?

a. 25.0 g
b. 42.5 g
c. 46.0 g
d. 77.5 g

Education, Inc.

What is the mass in grams of 2.5 moles of ammonia, NH_{3} ?

a. $\quad 25.0 \mathrm{~g}$
b. 42.5 g
c. 46.0 g
d. 77.5 g

> 1 mole $\mathrm{NH}_{3}=17.0 \mathrm{~g}(14.0 \mathrm{~g} \mathrm{~N}+3.0 \mathrm{~g} \mathrm{H})$
> 2.5 moles $\mathrm{NH}_{3} \times 17.0 \mathrm{~g} /$ mole $\mathrm{NH}_{3}=42.5 \mathrm{~g}$

Consider the combustion of propane as represented in this chemical equation.

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

When 7.5 moles of O_{2} are consumed, how many moles of CO_{2} are formed?
a. 3 moles of CO_{2}
b. 4 moles of CO_{2}
c. 4.5 moles of CO_{2}
d. 6 moles of CO_{2}

Consider the combustion of propane as represented in this chemical equation.

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

When 7.5 moles of O_{2} are consumed, how many moles of CO_{2} are formed?
a. 3 moles of CO_{2}
b. 4 moles of CO_{2}
c. 4.5 moles of CO_{2}
d. 6 moles of CO_{2}

Copyright © 2010 Pearson
Education, Inc.

A solution prepared by dissolving 0.50 moles of solute in 250 mL of solution would have what molarity?

a. $\quad 0.25 \mathrm{M}$
b. 0.5 M
c. 0.75 M
d. 1.5 M
e. 2.0 M

Copyright © 2010 Pearson
Education, Inc.

A solution prepared by dissolving 0.50 moles of solute in 250 mL of solution would have what molarity?

a. $\quad 0.25 \mathrm{M}$
b. 0.5 M
c. 0.75 M
d. 1.5 M
e. 2.0 M
$\mathrm{M}=$ moles $/ \mathrm{L}=0.50$ moles $/ 0.250 \mathrm{~L}=2.0 \mathrm{M}$

Copyright © 2010 Pearson
Education, Inc.

