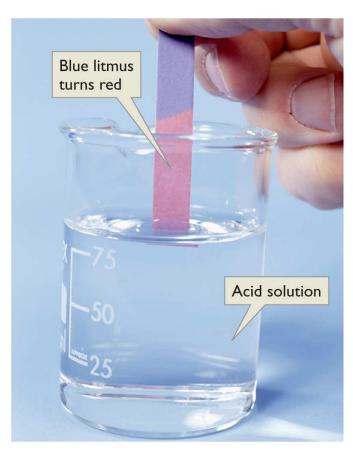

Chapter 7 Acids and Bases: Please Pass the Protons


According to the Arrhenius theory, an *acid* is any substance that dissolves in water to produce:

- a. H_3O^+
- b. OH-
- c. Salts
- d. Ions
- e. A bitter taste

According to the Arrhenius theory, an *acid* is any substance that dissolves in water to produce:

- a. H_3O^+
- b. OH-
- c. Salts
- d. Ions
- e. A bitter taste

Many metal oxides, such as Na₂O, dissolve in water to produce:

$$Na_2O + H_2O \rightarrow ?$$

- a. Acids
- b. Bases
- c. Neutral salts
- d. Covalent compounds
- e. A sour taste

Many metal oxides, such as Na₂O, dissolve in water to produce:

$$Na_2O + H_2O \rightarrow 2 NaOH$$

Sodium hydroxide-A strong base

- a. Acids
- b. Bases
- c. Neutral salts
- d. Covalent compounds
- e. A sour taste

What is the product when selenium dioxide reacts with water?

Selenium dioxide + Water
$$\rightarrow$$
 ?
SeO₂ + H₂O \rightarrow ?

- a. $Se(OH)_2$
- b. SeH₂O₂
- c. Se + H_2O_3
- d. H_2SeO_3
- e. $H_2SeO_2 + O$

What is the product when selenium dioxide reacts with water?

Selenium dioxide + Water
$$\rightarrow$$
 ?
SeO₂ + H₂O \rightarrow ?

- a. $Se(OH)_2$
- b. SeH_2O_2
- c. Se + H_2O_3
- d. H_2SeO_3
- e. $H_2SeO_2 + O$

Nonmetal oxides are acidic anhydrides and form their corresponding acid when they interact with water.

Copyright © 2010 Pearson Education, Inc.

Which of the following compounds is a *strong* acid?

$$H: O: + H^+ \longrightarrow \begin{bmatrix} H:O:H \\ H \end{bmatrix}^+$$
 b. H_3PO_4 c. H_2CO_3 Water Hydronium ion d. CH_3CO_3

© 2010 Pearson Education, Inc.

 HNO_3

d. CH₃COOH

e. H_3BO_3

Which of the following compounds is a strong acid?

Strong acids ionize essentially 100% in water.

Copyright © 2010 Pearson Education, Inc.

What would be the products of the following reaction?

$$H_3PO_4 + 3 KOH$$

 \longrightarrow

? ?

7

a.
$$KO + H_2O + PO_3$$

b.
$$KPO_4 + 3 H_2O$$

c.
$$K_3P + H_2O + 2O_2$$

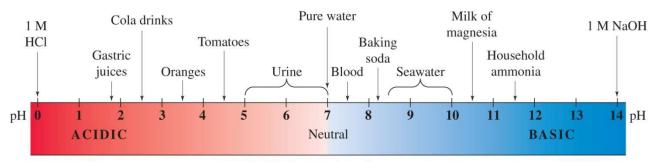
d.
$$K_3PO_4 + H_2O + 2O_2$$

e.
$$K_3PO_4 + 3 H_2O$$

What would be the products of the following reaction?

$$H_3PO_4 + 3 KOH \rightarrow K_3PO_4 + 3 H_2O$$
A salt + water

a.
$$KO + H_2O + PO_3$$

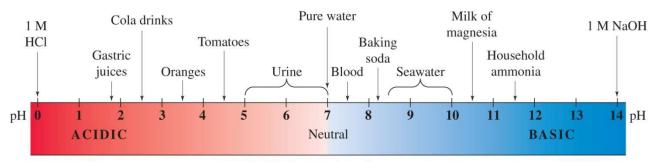

b.
$$KPO_4 + 3 H_2O$$

c.
$$K_3P + H_2O + 2O_2$$

d.
$$K_3PO_4 + H_2O + 2O_2$$

e.
$$K_3PO_4 + 3 H_2O$$

A solution with a [H₃O⁺] of 1 x 10⁻⁸ M would be considered:



© 2010 Pearson Education, Inc.

- a. Very acidic
- b. Slightly acidic
- c. Neutral
- d. Slightly basic
- e. Very basic

A solution with a [H₃O⁺] of 1 x 10⁻⁸ M would be considered:

© 2010 Pearson Education, Inc.

- a. Very acidic
- b. Slightly acidic
- c. Neutral
- d. Slightly basic (pH = 8)
- e. Very basic

Copyright © 2010 Pearson Education, Inc.