Chapter 7 Acids and Bases: Please Pass the Protons

Education, Inc.

According to the Arrhenius theory, an acid is any substance that dissolves in water to produce:

a. $\mathrm{H}_{3} \mathrm{O}^{+}$
b. OH^{-}
c. Salts
d. Ions
e. A bitter taste

According to the Arrhenius theory, an acid is any substance that dissolves in water to produce:

a. $\mathrm{H}_{3} \mathrm{O}^{+}$
b. OH^{-}
c. Salts
d. Ions
e. A bitter taste

Copyright © 2010 Pearson
Education, Inc.

Many metal oxides, such as $\mathrm{Na}_{2} \mathrm{O}$, dissolve in water to produce:

a. Acids
b. Bases
c. Neutral salts
d. Covalent compounds
e. A sour taste

Copyright © 2010 Pearson Education, Inc.

Many metal oxides, such as $\mathrm{Na}_{2} \mathrm{O}$, dissolve in water to produce:

a. Acids
b. Bases
c. Neutral salts
d. Covalent compounds
e. A sour taste

What is the product when selenium dioxide reacts with water?

Selenium dioxide + Water \rightarrow ? $\mathrm{SeO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow$?

a. $\mathrm{Se}(\mathrm{OH})_{2}$
b. $\mathrm{SeH}_{2} \mathrm{O}_{2}$
c. $\mathrm{Se}+\mathrm{H}_{2} \mathrm{O}_{3}$
d. $\mathrm{H}_{2} \mathrm{SeO}_{3}$
e. $\mathrm{H}_{2} \mathrm{SeO}_{2}+\mathrm{O}$

What is the product when selenium dioxide reacts with water?

Selenium dioxide + Water \rightarrow ? $\mathrm{SeO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow$?

a. $\mathrm{Se}(\mathrm{OH})_{2}$
b. $\mathrm{SeH}_{2} \mathrm{O}_{2}$
c. $\mathrm{Se}+\mathrm{H}_{2} \mathrm{O}_{3}$
d. $\mathrm{H}_{2} \mathrm{SeO}_{3}$
e. $\mathrm{H}_{2} \mathrm{SeO}_{2}+\mathrm{O}$

Nonmetal oxides are acidic anhydrides and form their corresponding acid when they interact with water.

Copyright © 2010 Pearson
Education, Inc.

Which of the following compounds is a strong acid?

Which of the following compounds is a strong acid?

$$
\begin{aligned}
& \mathrm{H}: \underset{\ddot{\mathrm{H}}}{\ddot{\mathrm{O}}}:+\mathrm{H}^{+} \longrightarrow[\mathrm{H}: \ddot{\mathrm{O}}: \underset{\ddot{\mathrm{H}}}{\mathrm{H}}]^{+} \\
& \text {a. } \mathrm{HNO}_{3} \\
& \text { b. } \mathrm{H}_{3} \mathrm{PO}_{4} \\
& \text { c. } \mathrm{H}_{2} \mathrm{CO}_{3} \\
& \text { d. } \mathrm{CH}_{3} \mathrm{COOH} \\
& \text { e. } \mathrm{H}_{3} \mathrm{BO}_{3}
\end{aligned}
$$

Strong acids ionize essentially 100% in water.

Education, Inc.

What would be the products of the following reaction?

$\mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{KOH} \rightarrow \quad \rightarrow ?$?

a. $\mathrm{KO}+\mathrm{H}_{2} \mathrm{O}+\mathrm{PO}_{3}$
b. $\mathrm{KPO}_{4}+3 \mathrm{H}_{2} \mathrm{O}$
c. $\mathrm{K}_{3} \mathrm{P}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{O}_{2}$
d. $\mathrm{K}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{O}_{2}$
e. $\mathrm{K}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}$

What would be the products of the following reaction?

$$
\begin{array}{r}
\mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{KOH} \rightarrow \underset{3}{\mathrm{~K}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}} \\
\text { A salt }+ \text { water }
\end{array}
$$

a. $\mathrm{KO}+\mathrm{H}_{2} \mathrm{O}+\mathrm{PO}_{3}$
b. $\mathrm{KPO}_{4}+3 \mathrm{H}_{2} \mathrm{O}$
c. $\mathrm{K}_{3} \mathrm{P}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{O}_{2}$
d. $\mathrm{K}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{O}_{2}$
e. $\mathrm{K}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}$

A solution with a $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of $1 \times 10^{-8} \mathrm{M}$ would be considered:

© 2010 Pearson Education, Inc.
a. Very acidic
b. Slightly acidic
c. Neutral
d. Slightly basic
e. Very basic

Copyright © 2010 Pearson
Education, Inc.

A solution with a $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of $1 \times 10^{-8} \mathrm{M}$ would be considered:

© 2010 Pearson Education, Inc.
a. Very acidic
b. Slightly acidic
c. Neutral
d. Slightly basic $(\mathrm{pH}=8)$
e. Very basic

Copyright © 2010 Pearson
Education, Inc.

