Gulf University for Science \& Technology Department of Economics \& Finance

ECON-380: Business Statistics
Dr. Khalid Kisswani

Assignment 1

1. A basketball player has the following points for a sample of seven games: $11,15,22,8,10,12,20$. Compute the following measures (show your work):
a. mean
b. standard deviation
a. The mean $=\Sigma X / n=98 / 7=14$
b. The standard deviation $=\sqrt{\text { variance }}$

$$
\text { Variance }=\sum(X-X)^{2} / n-1=166 / 6=27 \frac{2}{3}
$$

Hence: St. Deviation $=\sqrt{27 \frac{2}{3}}=5.26$

x	x-xbar	(x-xbar) 2
11	-3	9
15	1	1
22	8	64
8	-6	36
10	-4	16
12	-2	4
20	6	36

2. We found the following information for a sample of x and y :
$\sum(x-\bar{x})(y-\bar{y})=-120, \sum(x-\bar{x})^{2}=100, \sum(y-\bar{y})^{2}=225, \mathrm{n}=26$
Find the coefficient of correlation (r) and interpret your answer (show your work).
$\mathrm{r}=\frac{\operatorname{CoV}_{X, Y}}{\mathrm{~S}_{Y} * S_{X}}$
$\operatorname{CoV}_{X, Y}=\frac{\sum(x-\bar{x})(y-\bar{y})}{n-1}=\frac{-120}{25}=-4.8$
$S_{Y}=\sqrt{\frac{\sum(y-\bar{y})^{2}}{n-1}}=\sqrt{\frac{225}{25}}=3$,
$S_{X}=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{100}{25}}=2$
Hence: $r=\frac{-4.8}{3 * 2}=-0.8$ (strong negative relation)
3. If Z is a standard normal random variable, find the value Z_{0} for which:
a. $P\left(Z<Z_{0}\right)=0.35$
b. $P\left(Z>Z_{0}\right)=0.82$
a. $P\left(Z<Z_{0}\right)=0.35 \rightarrow P\left(Z_{0}<Z<0\right)=0.5-0.35=0.15$
$Z_{0}=-0.39$
b. $P\left(Z>Z_{0}\right)=0.82 \rightarrow P\left(Z_{0}<Z<0\right)=0.82-0.5=0.32$
$Z_{0}=-0.92$
4. A population has a mean of 50 and variance of 100 . If a random sample of 64 is taken, what is the probability that the sample mean is each of the following:
a. at most 52
b. at most 47.5
c. at least 46.8
d. between 48.5 and 52.5
e. between 50.6 and 51.3
a. $\mathrm{P}(\bar{X}<52)=\mathrm{P}\left(\mathrm{Z}<\frac{52-50}{\frac{10}{\sqrt{64}}}\right)=\mathrm{P}(\mathrm{Z}<1.6)$
$=0.5+P(0<Z<1.6)=0.5+0.4452=0.9452$
b. $\mathrm{P}(\bar{X}<47.5)=\mathrm{P}\left(\mathrm{Z}<\frac{47.5-50}{\frac{10}{\sqrt{64}}}\right)=\mathrm{P}(\mathrm{Z}<-2)$
$=0.5-P(0<Z<2)=0.5-0.4772=0.0228$
c. $\mathrm{P}(\bar{X}>46.8)=\mathrm{P}\left(Z>\frac{46.8-50}{\frac{10}{\sqrt{64}}}\right)=\mathrm{P}(Z>-2.56)$
$=0.5+P(0<Z<2.56)=0.5+0.4948=0.9948$
d. $\mathrm{P}(48.5<\bar{X}<52.5)=\mathrm{P}\left(\frac{48.5-50}{\frac{10}{\sqrt{64}}}<\mathrm{Z}<\frac{52.5-50}{\frac{10}{\sqrt{64}}}\right)=\mathrm{P}(-1.2<\mathrm{Z}<2)$
$=P(0<Z<1.2)+P(0<Z<2)=0.3849+0.4772=0.8621$
e. $\mathrm{P}(50.6<\bar{X}<51.3)=\mathrm{P}\left(\frac{50.6-50}{\frac{10}{\sqrt{64}}}<\mathrm{Z}<\frac{51.3-50}{\frac{10}{\sqrt{64}}}\right)=\mathrm{P}(0.48<\mathrm{Z}<1.04)$
$=P(0<Z<1.04)-P(0<Z<0.48)=0.3508-0.1844=0.1664$
