Gulf University for Science \& Technology Department of Economics \& Finance

ECON-380: Business Statistics
Dr. Khalid Kisswani

Assignment 2

1. At a local university, a sample of 16 evening students was selected in order to determine whether the average age of the evening students is significantly different from 21 . The average age of the students in the sample was 19 with a standard deviation of 3.5
a. state the null \& alternative hypotheses for this test
$\mathrm{H}_{0}: \mu=21$
$H_{1}: \mu \neq 21$
b. find the test statistic
$(t-$ stat $)=\frac{\bar{X}-\mu}{\frac{s}{\sqrt{n}}}=\frac{19-21}{\frac{3.5}{\sqrt{16}}}=-2.286$
c. develop your critical region for the test at a 5% significance level

Two sided test: $\alpha / \mathbf{2}=\mathbf{2 . 5 \%}, \mathrm{t}$ - critical value $(\mathrm{df}=\mathbf{1 5})= \pm 2.1315$
d. what is your conclusion at the 5% significance level

Since t-statistic falls in the rejection region, so we reject \mathbf{H}_{0} at $\alpha=5 \%$,
e. find the P-value for this test, and what is your conclusion

$$
P \text {-value }=2(1 \%-2.5 \%)=2 \%-5 \%
$$

At $\alpha=5 \%$, P-value $<\alpha$, so we reject H_{0} at $\alpha=5 \%$
2. Samples of final examination scores for two statistics classes with different instructors provided the following results.

Instructor A	Instructor B
$n_{1}=9$	$n_{2}=16$
$\bar{x}_{1}=72$	$\bar{x}_{2}=76$
$\sigma_{1}=8$	$\sigma_{2}=10$

a. develop a 95% confidence interval for the difference between the average grade for all the students at both professors' classes $\left(\mu_{A}-\mu_{B}\right)$

$$
\begin{aligned}
\mu_{1}-\mu_{2} & =\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}}{n_{1}}+\frac{\sigma^{2}}{n_{2}}}, Z_{0.025}=1.96 \\
\mu_{1}-\mu_{2} & =(72-76) \pm 1.96 \sqrt{\frac{64}{9}+\frac{100}{16}} \\
& =-4 \pm 7.16=(-11.16,3.16)
\end{aligned}
$$

b. to test a claim that Instructor A is tougher than Instructor B (average grade is lower), state the null \& alternative hypotheses for this test

$$
\mathbf{H}_{0}: \mu_{1}-\mu_{2}=\mathbf{o}
$$

$$
\mathbf{H}_{1}: \mu_{1}-\mu_{2}<\mathbf{o}
$$

c. find the test statistic for your test in part b

Z-statistic $=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{\sigma^{2}}{n_{1}}+\frac{\sigma^{2}}{n_{2}}}}=\frac{72-76}{\sqrt{\frac{64}{9}+\frac{100}{16}}}=-1.09$
d. develop your critical region for your test in part b, at a 5% significance level left sided test: Z-critical =-1.65
e. what is your conclusion at a 5% significance level for your test in part b

Since \mathbb{Z}-statistic falls in the acceptance region, so we accept H_{0} at $\alpha=5 \%$
f. find the P-value for your test in part b, and what is your conclusion

$$
\begin{aligned}
\mathrm{p} \text {-value } & =0.5-\mathrm{P}(0<\mathrm{Z}<1.09) \\
= & 0.5-0.3621 \\
= & 0.1379 \\
= & 13.8 \%
\end{aligned}
$$

$$
\text { P-value }>\alpha=10 \%
$$

So we accept H_{0} at $\alpha=\mathbf{1 0 \%}$
g. summarize in a table the 2 good decisions vs. the 2 bad decisions, showing type I and II errors

Decision	H_{0} true	H_{0} false
accept H_{0}	correct decision	type II error
reject H_{0}	type I error	correct decision

3. A sample of 500 musicians from Las Vegas shows that the average age is 40 years, and 20% of the sample is female. Create a 99% interval for the proportion of all female musicians in Las Vegas

$$
P=\widehat{p} \pm Z_{\alpha / 2} \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}, \quad \text { where: } \widehat{p}=0.2, Z_{0.005}=2.58
$$

So: $P=0.2 \pm 2.58 \sqrt{\frac{0.2(0.8)}{500}}$
$=0.2 \pm 0.05=(0.15,0.25)$

