Gulf University for Science \& Technology Department of Economics \& Finance

ECON-380: Business Statistics
Dr. Khalid Kisswani

Assignment 3

1. If you are interested in testing:
$\mathrm{H}_{0}: \sigma^{2}=150$
$\mathrm{H}_{1}: \sigma^{2} \neq 150$
And the following information is found from a random sample:

$$
\mathrm{n}=36 \quad \overline{\mathrm{x}}=24.6 \quad \mathrm{~S}=15
$$

a. calculate the test statistic for this test

$$
\chi^{2}(\text { test statistic })=\frac{(n-1) S^{2}}{\sigma_{0}^{2}}=\frac{35\left(15^{2}\right)}{150}=52.5
$$

b. at $\alpha=5 \%$, create your critical region and state the decision accordingly

Critical region:

Decision:
Since the χ^{2} (test statistic) falls in acceptance region \Rightarrow accept the null $\left(H_{0}\right)$ at $\alpha=5 \%$,
c. find the p -value for this test and write the decision accordingly
p-value $=2(0.025$ to 0.05$)=0.05$ to $0.10=5 \%$ to 10%
p-value $<\alpha=10 \% \Rightarrow$ reject the null $\left(H_{0}\right)$ at $\alpha=10 \%$,
2. Assume the following test:

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}=\mu_{5} \\
& H_{1}: \text { at least one mean is different }
\end{aligned}
$$

With the following data: $\operatorname{SSTR}=6,750 \quad$ SSE $=8,000$

$$
n_{T}=20
$$

a. Using 4-steps approach, run the test at $\alpha=5 \%$

F - Statistics $=\frac{M S T R}{M S E}$

MSTR $=\frac{S S T R}{k-1}=\frac{6750}{5-1}=1687.5$
MSE $=\frac{S S E}{n_{T^{-}} K}=\frac{8000}{20-5}=533.33$

Then, F- Statistics $=\frac{1687.5}{533.33}=3.16$

Critical $\mathrm{F}_{0.05,4,15}=3.06$

F- Statistics $>\mathbf{F}_{0.05,4,15} \Longrightarrow$ reject \mathbf{H}_{0} at $\alpha=\mathbf{5 \%}$
b. Find the p -value for this test and state the decision accordingly

$$
p \text {-value }=0.025 \text { to } 0.05=2.5 \% \text { to } 5 \%
$$

p-value $<\alpha=5 \% \Rightarrow$ reject the null $\left(\mathrm{H}_{0}\right)$ at $\alpha=5 \%$,
c. Create your ANOVA table for this problem

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F
Treatment	6750	4	1687.5	3.16
Error	8000	15	533.33	
Total	14750	19		

3. A statistics teacher wants to see if there is any difference in the abilities of MBA students enrolled in statistics today and those enrolled five years ago. A sample of final examination scores from students enrolled today and from students enrolled five years ago was taken. You are given the following information.

	Today	Five Years Ago
$\overline{\mathrm{x}}$	83	88
$\mathrm{~S}^{2}$	112.5	54
n	45	36

a. test at $\alpha=5 \%$ if the variance of the MBA students enrolled today and those enrolled five years ago is the same or different, using 4 -steps
$\mathrm{H}_{0}: \sigma^{2}(1)=\sigma^{2}(2)$
$\mathrm{H}_{1}: \sigma^{2}(1) \neq \sigma^{2}(2)$

F-statistic $=\frac{s^{2}(1)}{S^{2}(2)}=\frac{(112.5)}{(54)}=2.08$

Critical region:

Decision:
Since the \boldsymbol{F} (test statistic) $>\boldsymbol{F}_{0.025,44,35} \Rightarrow \underline{\text { reject the null }\left(H_{0}\right) \text { at } \alpha=5 \%}$
b. find the p -value of your test and write the decision accordingly
p-value $=2($ less than 0.01$)=$ less than 2%
p-value $<\alpha=5 \% \Rightarrow$ reject the null $\left(H_{0}\right)$ at $\alpha=5 \%$,
c. create a 95% confidence interval for the variance of the MBA students enrolled today

$$
\begin{aligned}
& \frac{(n-1) S^{2}}{\chi 2_{0.025,44}} \leq \sigma^{2} \leq \frac{(n-1) S^{2}}{\chi 2_{0.975,44}}=\frac{44(112.5)}{65.41} \leq \sigma^{2} \leq \frac{44(112.5)}{28.366} \\
& =75.68 \leq \sigma^{2} \leq 174.5
\end{aligned}
$$

