Gulf University for Science & Technology Department of Economics & Finance

ECON-380: Business Statistics Dr. Khalid Kisswani

Assignment 3

1. If you are interested in testing:

 H_0 : σ^2 = 150 H_1 : σ^2 ≠ 150

And the following information is found from a random sample:

a. calculate the test statistic for this test

 χ^2 (test statistic) = $\frac{(n-1)S^2}{\sigma^2_0} = \frac{35(15^2)}{150} = 52.5$

b. at α = 5%, create your critical region and state the decision accordingly

Decision: Since the χ^2 (*test statistic*) falls in acceptance region \Rightarrow accept the null (H₀) at α = 5%,

c. find the p-value for this test and write the decision accordingly

p-value = 2 (0.025 to 0.05) = 0.05 to 0.10 = 5% to 10%

p-value < $\alpha = 10\% \implies \text{reject the null (H}_0)$ at $\alpha = 10\%$,

2. Assume the following test:

H₀: $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$ H₁: at least one mean is different

With the following data: SSTR = 6,750 SSE = 8,000 $n_T = 20$

a. Using 4-steps approach, run the test at α = 5%

F- Statistics = $\frac{MSTR}{MSE}$

@GUSTKWT - MyGUST.com

 $MSTR = \frac{SSTR}{k-1} = \frac{6750}{5-1} = 1687.5$

$$\mathsf{MSE} = \frac{SSE}{n_T - K} = \frac{8000}{20 - 5} = \mathbf{533.33}$$

Then, F- Statistics = $\frac{1687.5}{533.33}$ = 3.16

Critical F_{0.05, 4, 15} = 3.06

- **F-** Statistics > $F_{0.05, 4, 15} \Rightarrow$ reject H_0 at $\alpha = 5\%$
- b. Find the p-value for this test and state the decision accordingly

p-value = 0.025 to 0.05 = 2.5% to 5%

p-value < α =5% \Rightarrow reject the null (H₀) at α = 5%,

c. Create your ANOVA table for this problem

Source of	Sum of	Degrees	Mean	
Variation	Squares	of Freedom	Square	F
Treatment	6750	4	1687.5	3.16
Error	8000	15	533.33	
Total	14750	19		

3. A statistics teacher wants to see if there is any difference in the abilities of MBA students enrolled in statistics today and those enrolled five years ago. A sample of final examination scores from students enrolled today and from students enrolled five years ago was taken. You are given the following information.

	Today	Five Years Ago
x	83	88
S ²	112.5	54
n	45	36

a. test at α = 5% if the variance of the MBA students enrolled today and those enrolled five years ago is the same or different, using 4-steps

H₀: $\sigma^2(1) = \sigma^2(2)$ H₁: $\sigma^2(1) \neq \sigma^2(2)$

F-statistic =
$$\frac{S^2(1)}{S^2(2)} = \frac{(112.5)}{(54)} = 2.08$$

Critical region:

*F*_{0.025,44,35} (1.8)

Decision: Since the F (*test statistic*) > $F_{0.025,44,35} \implies$ reject the null (H₀) at $\alpha = 5\%$

b. find the p-value of your test and write the decision accordingly

p-value = 2 (less than 0.01) = less than 2%

p-value < α =5% \Rightarrow reject the null (H₀) at α = 5%,

c. create a 95% confidence interval for the variance of the MBA students enrolled today

$$\frac{(n-1)S^2}{\chi^2_{0.025,44}} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{0.975,44}} = \frac{44(112.5)}{65.41} \le \sigma^2 \le \frac{44(112.5)}{28.366}$$

 $=75.68\leq \sigma^2 \ \leq 174.5$