Ficon 380
sep 21
Review:
Statistics? collecting, presenting; analy sing DATA
why?
To draw conclusions; answering questions.
population: collection of all elements of interest "everything". sample: subset of population.

* Measure for population \rightarrow "Para meters"
* Measure for sample \rightarrow "Statistics"

Measures:- $\rightarrow m$ m

1. Mean $\left(\frac{\bar{X}}{X}, M_{v}\right) \rightarrow$ Ararage $=\frac{\sum x \rightarrow}{n}$ any variable sample pquation

$$
=\frac{\text { sum of all values }}{\text { No. of all values }}
$$

Egg:- assume the following population DATA:-
$4,0,3,1,2 \rightarrow$ find Mean?

$$
M=\frac{4+0+3+1+2}{5}=\frac{10}{5}=2
$$

$$
A \rightarrow 2, Z \rightarrow A
$$

2. Median: Value in the middle (Data in order)

Eg:: Data set: $4,0,3,1,2$ find Median?

1. $0,1,2,3,4 \rightarrow 2$ is the median
case 2: Data set: $0,1,2,3,4,5$

$$
\text { median is }=\frac{2+3}{2}=2.5
$$

3. Variance $\left(S^{2}, \bar{\sigma}_{2}^{2}\right)$, $6 / j$ il
\rightarrow Sample' population $>$

$$
\sigma^{2}=\frac{\sum(x-M)^{2}}{n}, \quad S^{2}=\frac{\sum(x-\bar{X})^{2}}{n-1}
$$

Eg: assume the following Population DATA: 2,5,6,7,10 Find Variance?

1. $M=\frac{2+5+6+7+0}{5}=\frac{30}{5}=6$

$\frac{X}{2}$	$X-M$	$(X-M)^{2}$
5	-4	16
6	-1	1
7	0	0
10	1	1
	4	16

$\Sigma=0 \quad \varepsilon=34 \rightarrow$ it's the numerator Part

$$
\begin{aligned}
& G \text { always }=2 E R 0 \\
& \sigma^{2}=\frac{34}{5}=6.8
\end{aligned}
$$

If a case of sample instade of population?

$$
s^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1}=\frac{34}{5-1}=8.5
$$

4. Standered Deviation $f=\sqrt{\text { Variance }}$

$$
\sigma=\sqrt{6.8}=2.6 \quad S=\sqrt{8.5}=2.9
$$

5. Coefficiant of Variance $C V=\frac{\text { Sh. Deviation }}{\text { mean }} * 100 \%$

$$
* C V=\frac{\sigma}{M} * 100 \%, \quad C V=\frac{S}{\bar{x}} * 100 \%
$$

$\rightarrow C V$ is used when comparinglata sets with different units
\rightarrow The smaller ane shows lower variation than the other one.
Eg: assume $S=2.61, \bar{X}=6 \quad$ Find $\rightarrow C V_{\text {sample; }}$

$$
C_{\text {sample }}=\frac{2.61}{6} \times 100 \%=435 \%
$$

6. Measures of relationship (x, y)
a. Gveriance ($S_{x y}, \sigma_{x y}$)
b. coefficiant of correlation (r, p)
pa.Coveriance ($s_{y y}, \sigma_{x y}$)
coveriance shows if $x+y$ are psitivaly or neg
related.
if con. $>0 \rightarrow x+y$ positivaly rebated.
GOV. LO $\rightarrow x+y$ Negativaly related.

$$
\text { * } \sigma_{x y}=\frac{\sum\left(x-M_{x}\right)\left(y-M_{y}\right)}{n}, S_{x y}=\frac{\varepsilon(x-\bar{x})(y-\bar{y})}{n-1}
$$

eg:- for the following sample $(2,13),(6,20),(7,27)$. cove.?

$$
\begin{array}{cccc}
\frac{x}{2} \frac{y}{13} & \frac{x^{2-5}-\bar{x}}{-3} & \frac{y-\bar{y}}{-7} & \frac{(x-\bar{x})(y-\bar{y})}{21} \\
620 & 1 & 0 & 0 \\
727 & 2 & 7 & 14 \\
\bar{x}=\frac{15}{3}=\frac{5}{3} & & \varepsilon=35 \\
\bar{y}=\frac{60}{3}=20 & S_{x y}=\frac{35}{2}=17.5 \\
& & & \\
& & & \\
& & \text { related }
\end{array}
$$

b. coefficient correlation (${ }^{4}, p$)
or If shows if $x+y$ strongly or weakly related \rightarrow ip

$$
-1 \leqslant r, p \leqslant+1 \text { shoo }-1-1 / 2)=1 / 2 / 1
$$

(12 is the

$$
\text { * } P=\frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}}, r=\frac{S_{x y}}{S_{x} s_{r}}
$$

Eg: Find coefficient correlation of prev example:.
strongly related

$$
\begin{aligned}
& S_{x y}=17.5 \\
& S_{x}=\sqrt{\frac{\varepsilon(x-\bar{x})^{2}}{n-1}} \quad, \quad S_{y}=\sqrt{\frac{\varepsilon(y-\bar{y})^{2}}{n-1}}
\end{aligned}
$$

$$
\begin{aligned}
& S_{x}=\sqrt{\frac{14}{2}}=2.65 \\
& S_{y}=\sqrt{\frac{98}{2}}=7 \quad r=\frac{17.5}{(2.65)(7)}=.94
\end{aligned}
$$

Random variables "not sure about the outcome"
\rightarrow its value depends on chance (luck)
eg: Flip a Coin $\rightarrow(\mathrm{H}$ or $T)$, roll a die $(1,2,3,4,5$, or 6$)$

* Graphing "continuous variable" \rightarrow "Histogram"

* normal distribution curve * bell shape
* Symmetric Shape
\rightarrow Total area under the curve $=1 \rightarrow 100 \%$

$$
\begin{gathered}
0 \leqslant p(a<x<b) \leqslant 1 \\
p(x=\text { value })=0 \text { no } p \text { aa } \\
\text { certain point. }
\end{gathered}
$$

* How can we measure amy area under the curve "p"?

By: 1. Empirical Rule : easy but limited.
2. Slandered normal distribution " z ".

The area under the curve is almost $20=.95$

1. 68% within 10 around the mean

Note: $7 \rightarrow$ bagger than

$$
\Leftrightarrow \rightarrow \text { less than }
$$

eg: assume X is normally distributed with mean $=50$; St Div $6=10$

$P(x>60)=16$: remaining of. 88 from $\frac{1}{\frac{2}{2}}$
$p(x<40)=.16$
\rightarrow In total, they're equal to ? 100%
2.95% with in 2σ around the mean: $\sigma=10^{* 2} \rightarrow 8$

$$
\begin{aligned}
& p(50<x<70)=.475 \quad p(30<x<50)=.475 \\
& p(x>70)=.025 \text { : remand of } 95 \text { from } \frac{1}{3} / 2 \\
& p(x<30)=.025
\end{aligned}
$$

3. 100% within 35 around the mean

$$
\begin{aligned}
& p(20<x<80)=1 \\
& p(x>80)=0, p(x<20)=0
\end{aligned}
$$

way in measuring area under the curve is:
Standereel Normal Distribution z:
$\rightarrow Z$ Normally distributed with mean $=0, \sigma=1$ - important to know that...

* if we apply the empirical rule;

$$
\begin{aligned}
& p(-1<z 1) \approx .68 \\
& p(0<z 1) \approx .34 \\
& p(-2<z 2) \approx .95 \\
& p(-3(z 3) \approx 1 \\
&=0(-3<z<0)=\text { zero }
\end{aligned}
$$

Can Z exceed 3 or less than -3 ?
\rightarrow According to the emperical rule, the answer "NO" because there's nothing left.
How to find $p(o<z<1.65)$? z table reports any area under the curve between 0 is any Z value.

So, the

$$
\begin{aligned}
& p(0<z<1.65)=.4505- \\
& p(0<z<9)=.3413
\end{aligned}
$$

$\rightarrow Z$ table will give the each value...

$$
P(-1.65<z<0)=.4505
$$

What's the $p(z>2.51)$?

$$
\begin{aligned}
& =1 / 2-p(0(z<251) \\
& =1 / 2-.494=.006
\end{aligned}
$$

$$
\Delta p(z<-2.51)=\text { same answer }
$$

$$
* p(z<1.45) ?
$$

$$
=1 / 2+p(0<z<1.45)
$$

$$
\rightarrow 1 / 2+4265=.9265
$$

$$
\begin{aligned}
& * ?(1.45<z<2.51) ? \\
& =p(0<z<2.51)-p(0<z<1.45) \\
& =.494-.4265 \\
& =.0675
\end{aligned}
$$

$$
\begin{aligned}
& * p(-1.45<z<2.51) ? \\
& =p(-1.45<z<0)+p(0<z<2.51) \\
& =.4265+494=.9205
\end{aligned}
$$

* How can we find z-scare when the area is unknown?

$$
p(0<z<z 0)=.475 \rightarrow z_{0}=?
$$

Go z Table and search about the value, connect ct.

$$
\begin{aligned}
z_{0} & =1.96 \\
* p(o<z & \left.<z_{0}\right)=.41 \rightarrow z_{0}=? \\
\rightarrow & 1.35
\end{aligned}
$$

$* P(2>Z 0)=.13 \rightarrow Z_{0}=$? which are?

$$
p(o(z<\cdot 13)=
$$

first one reports. 37 is

$$
\begin{aligned}
& z 0=1.13 \\
& * p(z>z 0)=.92 \rightarrow \text { bigger than } / 2
\end{aligned}
$$

first one reports. 42 in z table is

$$
\begin{aligned}
& z_{0}=-1.41 \text { reports. } 42 \text { in } 2 \text { is } \\
&
\end{aligned}
$$

left side of the curve

Area between 0 and z

	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0	0	0.004	0.008	0.012	0.016	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.091	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.148	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.17	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.195	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.219	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.258	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.291	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.334	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.377	0.379	0.381	0.383
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.398	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.437	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.475	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.483	0.4834	0.4838	0.4842	0.4846	0.485	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.489
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.492	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.494	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.496	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.497	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.498	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.499	0.499

* What if the normally distribateel variable is not E ? How can you find the area under the curve?

To convert x into $z, z=\frac{X-M}{\sigma}$

* if X is normally distributed with $M=50, \sigma=10$, what's the $p(x>75)$?

$$
\begin{aligned}
p(x>75)= & p\left(z>\frac{75-50}{10}\right)=p(x>2.5) \\
& =1 / 2-p(0<z<2.5) \\
& =1 / 2-.4938=.0062
\end{aligned}
$$

$$
\begin{aligned}
& \text { of } b: p(x<63)=p\left(z<\frac{63-50}{10}\right)=p(z<1.3) \\
& \frac{1 / 2+p(0>z>1.3)}{1 / 2}+1 / 2+p(0<z<1.3) \\
& \frac{1}{0} \frac{1.3}{0}=1 / 2 t .4032=.9032
\end{aligned}
$$

C : if 3% of the values will releive "Merit", what's the Maximum value for the "merit"?

$$
P(z>z 0)=.03
$$

$$
\begin{aligned}
& p\left(z>z_{0}\right)=.03 \rightarrow z_{0}=? \\
& \rightarrow p\left(0<z<z_{0}\right)=.47 \rightarrow z_{0}=1.89 \text { (table) } \\
& \text { and } z=\frac{x-M}{\sigma} \rightarrow 1.89 \Rightarrow x \frac{x-50}{10} \\
& x-50=1.89 * 10 \rightarrow x=68.9 \text { max for }
\end{aligned}
$$

d. if 2% of value are to get punished whats merit the minimum value to not be punished?

thus $z=\frac{x-M}{\sigma} \rightarrow-2.06 \neq \frac{x-50}{10}$

$$
x-50=-20.6 \rightarrow x=29.4 \text { min value to punish }
$$

e: What are the max 3 min values of x ?

$$
\begin{aligned}
\max & =50+30^{10}=50+30 \\
& =80 \\
\min & =50-30^{10}=50-30 \\
& =20
\end{aligned}
$$

Note: Z is Vaiclated when $M \times 030 \times 1$; therefore, it would he \bar{X} ins CHAPTER 7: Sampling distribution of $\bar{X}^{\text {de }}$
\rightarrow prob distribution of \bar{x}
eg: assume a population (x) consists of 3 numbers $9,3,5$ we take a sample of two numbers with replacement.
pet wo back 8

* Why replacement? Cur the papublicn is little? were trying to increase them... possible samples
$\left.\begin{array}{l|l}\text { Sample } & \bar{x} \\ \hline 1,1 & 14 \\ 1,3 & 2 \\ 1,5 & 3 \\ 3,1 & 2 \\ 3,3 & 3 \\ 3,5 & 4 \\ 5,1 & 3 \\ 5,3 & 4 \\ 5,5 & 5\end{array}\right] \bar{x}$ possible \bar{X} valuation
$\bar{X}: 1,2,3,2,3,4,3,4,35$: measures for (\bar{X}) Rp...

1. Mean $\frac{M_{\bar{x}}}{\bar{x}}=\frac{9+2+3+2+3+4+3+4+5}{9}=\frac{27}{a}=3$
expected valuE \bar{x}
2. $\frac{\operatorname{variance}}{\bar{X}} \frac{\sigma_{\bar{x}}^{2}}{\bar{X}-M_{\bar{x}}}=\frac{\varepsilon\left(\bar{X}-M_{\bar{x}}\right)^{2}}{\left(\bar{x}-M_{\bar{x}}^{n}\right)^{2}}$

\bar{X}	$\bar{x}-M_{\bar{x}}$	$(\bar{x}-M \bar{x})^{2}$
1	-2	4

* Going back to original population (x) 1,3,5 measures:.

$$
\text { 1. } \text { Mean }(M)=\frac{1+3+5}{3}=3
$$

2. Variance $\sigma^{2}=\frac{\sum(x-M)^{2}}{n}=\frac{(1-3)^{2}+(3-3)^{2}+(5-3)^{2}}{3}=\frac{8}{3}$
3. St $\operatorname{div} \sigma=\sqrt{\sigma^{2}}=\sqrt{\frac{8}{3}}=\frac{2 \sqrt{2}}{\sqrt{3}}$

* Compare the measures...

1. $M_{\bar{x}}=M$
2. $\sigma_{x}^{2}=\frac{\sigma^{2}}{n}: n$ is sample size

$$
\begin{aligned}
& \begin{array}{l}
\text { 3. } \sigma x=\frac{\sigma}{\text { st edrou of }} \sqrt{n}
\end{array} \\
& \bar{x}
\end{aligned}
$$

assume (x) has mean $=100$ with st Div $=15$.
if we take many samples of size 5 , whats $M \bar{x}, \sigma_{x}^{2}, \sigma_{\bar{x}}$?

$$
\begin{aligned}
& M_{\bar{x}}=M_{\bar{x}}=100 \\
& \sigma_{\bar{x}}^{2}=\frac{\sigma^{2}}{n}=\frac{(15)^{2}}{5}=45 \\
& \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}=\frac{15}{\sqrt{5}}=3 \sqrt{5}
\end{aligned}
$$

if x is normally distributed, then the \bar{x} will be normally y distributeel. But if x is not normally distributed, \bar{x} will be almost ncronally distributed if the sample size is large enough... large enough means ($n>30$)
size important once X is not normal..
centeral limit theorem C.L.T

When \bar{x} is nurucelly distributes, then we can find any area under the curve $p(a<\bar{x}<b)$.
P Convert \bar{x} into $z . Z_{\bar{x}}=\frac{\bar{x}-M_{\bar{x}}}{\sigma_{\bar{x}}}$
eg: if scores are normally distributed with mean $=1,2003$ st. Div $=60$.

A sample of 36 scores is selected, what's the probibility that the sample mean will be:
a: large than 1,224
b: less than 1,215
c: between 1190-1220
d: between ' $1205 \div 1,225$
e : exactly 1,220

$$
\begin{aligned}
& a: p(\bar{x}>1,224)=p\left(z>\frac{1224-M}{\left(\frac{\sigma}{\sqrt{n}}\right)}\right)=p\left(z>\frac{1224-1200}{\frac{60}{\sqrt{36}}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& b: p(\bar{x}<1215)=p\left(z<\frac{1215-1200}{\frac{60}{\sqrt{36}}=10}=p(z<1.5)\right. \\
& \begin{array}{c}
=1 / 2+P(0<2<1.5)=12+.4332 \\
=.9332
\end{array} \\
& =.9332 \\
& c: p(1190<\bar{X}<1220)=P\left(\frac{(190-1200)}{10} z z<\frac{1220-1200}{10}\right) \\
& =P(-1<z 2)=P(0<z<2)+P(-1<x<0) \\
& =.4772+3413=\frac{.8185}{\frac{100^{2}}{\frac{10}{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& d: p(1,205<\bar{x}<1,225) \\
= & p\left(\frac{1,205-1,200}{10}<\bar{x}<\frac{1,2251,200}{10}\right)=p(.5<x<2.5) \\
= & p(0<x<2.5)-p(0<0<.5) \\
= & =.4938-.1915 \\
& =.3023
\end{aligned}
$$

CHAPTER E: Estimation of $M \dot{J} \pi(p)$: population porportion\%

* Estimation of M :
\rightarrow Finding the true M is hard cur we don't have full info about the population.
$\rightarrow M$ many many samples to be calculated, but in real life we take one sample only.
So, we take one sample 3 . Find \bar{x}, then use \bar{x} to estimate M.
\rightarrow Estimation is DoNE in two ways:-

1. Point estimation 2. Interval estimation

$$
\rightarrow M=\bar{X} \rightarrow \text { paint estimation of } M
$$

BUT: Different samples give different \bar{X}_{s}
2. Interval estimation: we construct an interval around \bar{x} ? beleive that it captures M.

\rightarrow we create the interval with a certain level of confidence. (confidence level) it goes between $90 \%-99 \%$.
\rightarrow there are 3 popular levels: $90 \%, 95 \%, 399 \%$
if $M>b \Rightarrow$ mistake y significance level α $M<a \Rightarrow$ mistake "alfa" \&

* If you're 95% confidence, then α is 5%. So, it's always the rest of 100%.
\rightarrow Range of $\alpha: 1 \% \rightarrow 10 \%$: 3 popular levels: $1 \%, 5 \%, 310 \%$
* How Can we create the interval?

$$
M=\bar{X} \pm \text { margin of error }
$$

$a: \sigma$ is known

$$
M=\bar{x} \pm(\text { critical value) (St. error of } \bar{x})
$$

$$
M=\bar{X} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}
$$

eg:

$$
\begin{gathered}
\alpha=5 \% \Rightarrow \alpha_{2}=-025(2.5 \%) \\
z=1.96
\end{gathered}
$$

eg: Create a 90% confidence interval for the avarice of all college students in Kuwait, when a sample of 100 Students shows an avaroge age $=19.5 \mathrm{yrs}$ (st iv of all ages of all students is 15 yrs.

$$
\begin{aligned}
& \rightarrow n=100, \overline{\bar{X}}=19.5, \sigma=15 \\
& M=\bar{X} \pm Z_{\frac{\alpha}{2}}\left(\frac{\sigma}{\sqrt{n}}\right): \alpha \text { is } 10 \% \text {, so } \frac{\alpha}{2} \text { is } 5 \% .05 \\
& \text { in Z table, } 0.45 \text { is } 1.65 \\
& M
\end{aligned} \quad \begin{array}{rl}
M & 19.5 \pm 1.65\left(\frac{15}{\sqrt{100}}\right) \rightarrow \text { st error of } \bar{x} \\
& =19.5 \pm 2.48 \rightarrow \text { margin of error } \\
a=19.5-2.48=17.02
\end{array} \quad \begin{aligned}
a=19.5+2.48=21.98
\end{aligned}
$$

So, the avavge age of all college students in KWT is between (17.02-21.98) with a confidence of 90%.
b : When σ might not be known! we cant use Z table in this case... Instead, a new distribution (t) will be used. t-distribution is a normally distributed with mean but variance >1 (variance depends an n)
\rightarrow When $\cap \uparrow$, variance \forall

* we use table to find t-scove according to area under the curve.
t-table area on the right side under the curve $\%$

* Interval Estimation when σ is unknown

$$
\begin{aligned}
M & =\bar{x} \pm \text { margin of error } \\
& =\bar{x} \pm t_{\frac{\alpha}{2}, a f} \cdot\left(\frac{s}{\sqrt{n}}\right) \rightarrow \text { st error of } \bar{x}
\end{aligned}
$$

eg: Create a 99% confidence interval for the avenge age of the city when a sample of 25 shows an avenge age $=29$ with St. devi $=10^{\text {s }}$

$$
\begin{aligned}
& M=\bar{x} \pm t_{\alpha} \cdot d \cdot \frac{s}{\sqrt{n}}: \alpha=1 \% \rightarrow \frac{\alpha}{2}=.005 y \\
& M=29 \pm(2.8) \cdot\left(\frac{10}{\sqrt{25}} \rightarrow \begin{array}{cl}
\text { of } \bar{x} & \rightarrow 2.7969 \approx 2.8
\end{array}\right]_{\mathrm{bb}}^{\mathrm{tb}} \\
& =29 \pm 5.6 \text { margin of error } \\
& \begin{array}{rlrl}
(23.4, ~ 34.6) & M & \vdots \\
23.4 & x & 3!.6 \\
\vdots & & \vdots
\end{array}
\end{aligned}
$$

* Sample size needed for certain margin of error (M.E).

$$
n=\left[\frac{z_{\frac{\alpha}{2}} \sigma}{M \cdot E}\right]^{2}
$$

eg: What's the sample size needed to have a margin of error $= \pm 10$ when $\sigma=30 \dot{j} \alpha=10 \%$

$$
\begin{gathered}
\alpha=10 \%: \frac{\alpha}{2}=5 \% \rightarrow Z_{\frac{\alpha}{2}}=1.65 \\
n=\left[\frac{(1.65)(30)}{10}\right]^{2}=24.5025 \approx 25 \text { days sound to the net } \\
\text { whole summer... }
\end{gathered}
$$

* Estimation of $\pi(p)$ population proportion: the size of a contain group within the population.

$$
\pi=\frac{X}{N}
$$

But, it's hard to find the true π, cur we dort have full information about the whole population
so, we take a sample's find sample proportion ($\hat{?}$), then use \hat{p} to estimate π

Estimation is:-

$$
\text { a: point estimation is: : } \begin{aligned}
\text { b: Interval estimation: } \begin{aligned}
& \pi=\hat{p} \pm \text { mint est of } \pi \\
& \text { b: of error } \\
&=\hat{p} \pm z_{2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n} \rightarrow \text { st error }}
\end{aligned}
\end{aligned}
$$

eg: Create a 90% confidence interval for the \% of black cars in the city when a sample of 1000 cars shows 200 are black.

$$
\begin{gathered}
\hat{p}=\frac{200}{1000}=\cdot 2: 20 \% \quad \alpha=10 \%: \frac{\alpha}{2}=5 \% \\
\left.\pi=.2 \pm(1.65) \sqrt{\frac{.2(.8)}{1000}}\right]=.012 \text { st error of } \hat{p} \\
\pi=.2 \pm .02 \Rightarrow(.18, .22)
\end{gathered}
$$

t table with right tail probabilities

dflp	$\mathbf{0 . 4}$	$\mathbf{0 . 2 5}$	$\mathbf{0 . 1}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 2 5}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 0 5}$	$\mathbf{0 . 0 0 0 5}$
$\mathbf{1}$	0.3249	1.0000	3.0777	6.3138	12.7062	31.8205	63.6567	636.6192
$\mathbf{2}$	0.2887	0.8165	1.8856	2.9200	4.3027	6.9646	9.9248	31.5991
$\mathbf{3}$	0.2767	0.7649	1.6377	2.3534	3.1825	4.5407	5.8409	12.9240
$\mathbf{4}$	0.2707	0.7407	1.5332	2.1318	2.7765	3.7470	4.6041	8.6103
$\mathbf{5}$	0.2672	0.7267	1.4759	2.0150	2.5706	3.3649	4.0321	6.8688
$\mathbf{6}$	0.2648	0.7176	1.4398	1.9432	2.4469	3.1427	3.7074	5.9588
$\mathbf{7}$	0.2632	0.7111	1.4149	1.8946	2.3646	2.9980	3.4995	5.4079
$\mathbf{8}$	0.2619	0.7064	1.3968	1.8595	2.3060	2.8965	3.3554	5.0413
$\mathbf{9}$	0.2610	0.7027	1.3830	1.8331	2.2622	2.8214	3.2498	4.7809
$\mathbf{1 0}$	0.2602	0.6998	1.3722	1.8125	2.2281	2.7638	3.1693	4.5869
$\mathbf{1 1}$	0.2596	0.6974	1.3634	1.7959	2.2010	2.7181	3.1058	4.4370
$\mathbf{1 2}$	0.2590	0.6955	1.3562	1.7823	2.1788	2.6810	3.0545	4.3178
$\mathbf{1 3}$	0.2586	0.6938	1.3502	1.7709	2.1604	2.6503	3.0123	4.2208
$\mathbf{1 4}$	0.2582	0.6924	1.3450	1.7613	2.1448	2.6245	2.9768	4.1405
$\mathbf{1 5}$	0.2579	0.6912	1.3406	1.7531	2.1315	2.6025	2.9467	4.0728
$\mathbf{1 6}$	0.2576	0.6901	1.3368	1.7459	2.1199	2.5835	2.9208	4.0150
$\mathbf{1 7}$	0.2573	0.6892	1.3334	1.7396	2.1098	2.5669	2.8982	3.9651
$\mathbf{1 8}$	0.2571	0.6884	1.3304	1.7341	2.1009	2.5524	2.8784	3.9216
$\mathbf{1 9}$	0.2569	0.6876	1.3277	1.7291	2.0930	2.5395	2.8609	3.8834
$\mathbf{2 0}$	0.2567	0.6870	1.3253	1.7247	2.0860	2.5280	2.8453	3.8495
$\mathbf{2 1}$	0.2566	0.6864	1.3232	1.7207	2.0796	2.5177	2.8314	3.8193
$\mathbf{2 2}$	0.2564	0.6858	1.3212	1.7171	2.0739	2.5083	2.8188	3.7921
$\mathbf{2 3}$	0.2563	0.6853	1.3195	1.7139	2.0687	2.4999	2.8073	3.7676
$\mathbf{2 4}$	0.2562	0.6849	1.3178	1.7109	2.0639	2.4922	2.7969	3.7454
$\mathbf{2 5}$	0.2561	0.6844	1.3163	1.7081	2.0595	2.4851	2.7874	3.7251
$\mathbf{2 6}$	0.2560	0.6840	1.3150	1.7056	2.0555	2.4786	2.7787	3.7066
$\mathbf{2 7}$	0.2559	0.6837	1.3137	1.7033	2.0518	2.4727	2.7707	3.6896
$\mathbf{2 8}$	0.2558	0.6834	1.3125	1.7011	2.0484	2.4671	2.7633	3.6739
$\mathbf{2 9}$	0.2557	0.6830	1.3114	1.6991	2.0452	2.4620	2.7564	3.6594
$\mathbf{3 0}$	0.2556	0.6828	1.3104	1.6973	2.0423	2.4573	2.7500	3.6460
$\mathbf{\text { inf }}$	0.2533	0.6745	1.2816	1.6449	1.9600	2.3264	2.5758	3.2905

Gulf University for Science \& Technology
Department of Economics \& Finance
ECO-380: Business Statistics

Dr. Khalid Kisswani
Room: N1-116
Tel: 2530-7339
kisswani.k@gust.edu.kw

Assignment 1(LO i)

1. The hourly wages of a sample of 130 system analysts are given below.
$\begin{array}{ll}\text { mean }=60 & \text { range }=20 \\ \text { mode }=73 & \text { variance }=\sqrt{324} \\ \text { median }=74 & \end{array}$
$\frac{\sigma}{M} * 100=\frac{18}{60} * 100 \%=30 \%$
The coefficient of variation equals
a. 0.30%
(b) 30%
c. 5.4%
d. 54%
2. The variance of a sample of 169 observations equals 576 . The standard deviation of the sample equals a. 13
(b) 24
c. 576

d. 28,461
3. The standard deviation of a sample of 100 observations equals 64 . The variance of the sample equals
a. 8
b. 10
c. 6400
(d. 4,096
4. Which of the following symbols represents the mean of the opulation?
a. σ^{2}
b. σ
c. $\underline{\mu}$
d. $\overline{\mathrm{x}}$
5. Which of the following symbols represents the variance of the population?
(a) σ^{2}
b. σ
c. μ
d. $\overline{\mathrm{x}}$
6. The coefficient of correlation ranges between
a. 0 and 1
(b) -1 and +1
c. minus infinity and plus infinity
d. 1 and 100

7. Given the following information:

Standard deviation = 8
Coefficient of variation $=64 \%$
The mean would then be
(a.) 12.5
b. 8
$.64 * \frac{8}{m}$
c. 0.64
d. 1.25

$$
\frac{8}{.64}=\frac{.64 m}{.64}
$$

8. The standard deviation of a sample was reported to be $\stackrel{50}{50}$. The report indicated that $\sum(x-\bar{x})^{2}=7200$. What has been the sample size?
a. 16
b. 17
c. 18
$20-1$
(d.) 19

Exhibit 3-2

A researcher has collected the following sample data
$\begin{array}{llllll}5 & 12 & 6 & 8 & 5 \\ 6 & 7 & 5 & 12 & 4\end{array}$
9. Refer to Exhibit 3-2. The median is

a. 5
(b.) 6
c. 7
d. 8

-

10. Refer to Exhibit 3-2. The mean is
a. 5
b. 6
$\begin{array}{lll}\text { c.. } & 7 & 70 \\ \text { d. } & 8 & \frac{70}{10}\end{array}$
(a) The probability that a continuous random ariable take any specific value $=0$
b. is at least 0.5
c. depends on the probability density function
d. is very close to 1.0
11. A normal distribution with a mean of 0 and a standard deviation of 1 is called bill shape, symitric
a. a probability density function γ
b. an ordinary normal curve
c. a standard normal distribution
d. None of these alternatives is correct.

$$
\sigma=1, M=0
$$

13. In a standard normal distribution, the probability that Z is greater than $z e r o$ is (a) 0.5
b. equal to 1
c. at least 0.5
d. 1.96

14. The random variable x known to be normally distributed. The probability of x having a value equals 80 or 95 is
(b) 0.75 zero af a certain Point
c. 1
d. Can't be found, because there isn't enough information
15. Z is a standard normal random variable. The $\mathrm{P}(-1.96 \leq \mathrm{Z} \leq-1.4)$ equals
a. $\overline{\overline{0}} .8942$
(b.) 0.0558
c. 0.475
d. 0.4192

$$
\begin{aligned}
& P(o<z<-1.06)-p(o<z<-1.4)^{-1.96-1.40} \\
& =.475-.4192
\end{aligned}
$$

16. Z is a standard normal random variable. The $\mathrm{P}(-1.20 \leq \mathrm{Z} \leq 1.50)$ equals
a. 0.0483
b. 0.3849
c. 0.4332
$p(o<z<1.5)+p(-1.2<z<0)$

(d.) 0.8181
17. Given that Z is a standard normal random variable, what is the probability that $-2.51 \leq Z \leq-1.53$?
a. 0.4950
b. 0.4370
(c.) 0.0570
d. 0.9310

18. Given that Z is a standard normal random variable, what is the probability that $\mathrm{Z} \geq-2.12$?
a. 0.4830

b. 0.9830
c. 0.017
d. 0.966
d. 0.966
M
σ
19. X is a normally distributed random variable with a mean of 8 and a standard deviation of 4 . The probability that X is between 1.48 and 15.56 is
a. 0.0222
b. 0.4190
c. 0.5222
(d.) 0.9190

$$
\frac{15.56-8}{4}=1.89, \frac{1.48-8}{4}=-1
$$

$$
P(0<z<1.89)+(-1.63<z<0)
$$

$$
=
$$

20. X is a normally distributed random variable with a mean of 5 and a variance of 4 . The probability that X is
greater than 10.52 is
a. $0.0029=$
$\frac{10.52-5}{2}=2.76$
$\begin{array}{ll}\text { c. } & 0.4971 \times \\ \text { d. } & 0.9971 x\end{array}$

$$
1 / 2-p(o<z<2.76)
$$

21. Given that Z is a standard normal random variable, what is the value O if the area to the Zeft is 0.0559 ?

a.	0.4441
(b.	1.59
c.	0.0000
d.	1.50

$$
1 / 2+.0559=.4441 \rightarrow \text { area under curve }
$$

Gulf University for Science \& Technology
Department of Economics \& Finance
ECO-380: Business Statistics

Dr. Khalid Kisswani
Room: N1-116
Tel: 2530-7339
kisswani.k@gust.edu.kw

Assignment 2 (LO i)

1. A simple random sample of 100 observations was taken from a large population. The sample mean and the standard deviation were determined to be 80 and 12 respectively. The standard error of the mean is
a. 1.20
b. 0.12
c. 8.00
d. 0.80
00

ANS: A
$\bar{m} \sigma$
2. A population has a standard deviation of $\stackrel{\sigma}{16}$. If a sample of size 64 is selected from this population, what is the probability that the sample mean will be within ± 2 of the population mean?
a. 0.6826
b. 0.3413
c. -0.6826
d. Since the mean is not given, there is no answer to this question.

ANS: A

3. As the sample size increases, the
a. standard deviation of the population decreases x
b. population mean increases x
C. standard error of the mean decreases
d. standard error of the mean increases

ANS: C
4. The probability distribution of the sample mon is called the
a. central probability distribution
6. sampling distribution of the mean
c. random variation
d. standard error

ANS: B
5. A population has a mean of 75 and a standard deviation of 8 . A random sample of 800 is selected. The expected value of \bar{x} is
a. $8=M=M_{\bar{x}}$
(b) 75
c. 800
d. None of these alternatives is correct.

ANS: B
6. From a population of 200 elements, a sample of 49 elements is selected. It is determined that the sample mean
\bar{X} is 56 and the sample standard deviation is 14 . The standard error of the mean is
a. 3
(b.) 2
c. greater than 2

S

d. less than 2

ANS: B
7. A population has a mean of 300 and a standard deviation of $\stackrel{\sigma}{18}$. A sample of 144 observations will be taken. The probability that the sample mean will be between 297 to 303 is
a. $0.4332 X$
(b) 0.9544 .
c. 0.9332
d. 0.0668 X

ANS: B

$$
=.4772+.4772
$$

$$
\frac{297-700}{\frac{18}{\sqrt{1011}}}=-2
$$

8. A simple random sample of 64 observations was taken from a large population. The sample mean and the standard deviation were determined to be 320 and 120 respectively. The standard error of the mean is
a. $\quad 1.875$
b. 40
c. 5
d. 15

ANS: D
S

$$
\frac{120}{\sqrt{64}}=
$$

9. random samples of size 81 are taken from an infinite population whose mean and standard deviation are 200 and 18, respectively. The distribution of the population is unknown. The mean and the standard error of the mean are 5
a. 200 and 18
b. 81 and 18
c. 9 and 2
(d.) 200 and 2

ANS: D

$$
\begin{aligned}
& M=M_{\bar{x}}=200 \\
& \sigma_{\bar{x}}=\frac{s}{\sqrt{n}}=\frac{18}{\sqrt{81}}=2
\end{aligned}
$$

10. A population has a mean of 80 and a standard deviation of 7 . A sample of 49 observations will be taken. The probability that the sample mean will be larger than 82 is
a. 0.5228
b. 0.9772
c. 0.4772
(d.) 0.0228

ANS: D

$$
\begin{gathered}
\frac{82-80}{\frac{7}{\sqrt{49}}}=2 \rightarrow 4772 \\
.5-4772
\end{gathered}
$$

11. A population has a mean of 180 and a standard deviation of 24 . A sample of 64 observations will be taken. The probability that the sample mean will be between 183 and 186 is
(a) 0.1359
b. 0.8185
c. 0.3413
d. 0.4772

ANS: A

$$
\begin{aligned}
4772-3413 & =\frac{183-180}{\frac{24}{\sqrt{64}}}=1: \\
& =.3413
\end{aligned}
$$

$$
s \frac{186-180}{\frac{24}{\sqrt{64}}}=2
$$

12. Random samples of size 49 are taken from a population that has 200 elements, a mean of 180 , and a variance
$s=\sqrt{19} 9$ $=14$ of 196. The distribution of the population is unknown. The mean and the standard error of the mean are
a. $\quad 180$ and 24.39
b. $\quad 180$ and 28
c. 180 and 2.5
d. 180 and 2

ANS: D

$$
\begin{aligned}
& M=M \bar{x}=180 \\
& \sigma_{\bar{x}}=\frac{s}{\sqrt{n}}=\frac{14}{\sqrt{4 a}}=2
\end{aligned}
$$

13. A population has a mean of 84 and a standard deviation of 12 . A sample of 36 observations will be taken. The probability that the sample mean will be between 80.54 and 88.9 is
a. $0.0347 x$
b. 0.7200 .
c. 0.9511 .
d. 8.3600χ

ANS: C

$$
\frac{4.9}{\frac{2}{\sqrt{36}}}=2.45 ; \frac{-3.46}{\frac{12}{\sqrt{21}}}=-1.73
$$

14. A population has a mean of 53 and a standard deviation of 21 . A sample of 49 observations will be taken. The probability that the sample mean will be greater than 57.95 is
a. 0
b. . 0495
c. .4505
d. . 9505

ANS: B

Gulf University for Science \& Technology
Department of Economics \& Finance
ECO-380: Business Statistics

Dr. Khalid Kisswani
Room: N1-116
Tel: 2530-7339
kisswani.k@gust.edu.kw

Assignment 3 (LO ii)

1. When s is used to estimate σ, the margin of error is computed by using
a normal distribution
b. t distribution
c. the mean of the sample
d. the mean of the population

ANS: B

$$
\sigma=\sqrt{900}=30
$$

2. From a population with a variance of 900 , a sample of 225 items is selected. At 95% confidence, the margin of error is
a. 15
b. 2

$$
\& \text { masinofewer } \alpha=5 \%
$$

c. 3.92

$$
\bar{x} \pm z_{\frac{\alpha}{2}} \cdot\left(\frac{\sigma}{\sqrt{n}}\right)
$$

$$
\alpha / 2=.025
$$

$$
z=.475
$$

d. 4

ANS: C

$$
1.96 \cdot \frac{30}{\sqrt{225}}=
$$

$$
\nabla^{1.96}
$$

3. A population has a standard deviation of 50. A random sample of 100 items from this population is selected. The sample mean is determined to be 600 . At 95% confidence, the margin of error is
a. 5
b. 9.8
c. 650
d. 609.8

$$
1.96 \cdot \frac{50}{\sqrt{100}}=9.8
$$

ANS: B
4. In order to determine an interval for the mean of a population withunknory standard deviation a sample of 61 items is selected. The mean of the sample is determined to be 23. The number of degrees of freedom for reading the t value is

X
a. 22
b. 23
(c) 60

d. 61

ANS: C

5. The value added and subtracted from a point estimate in order to develop an interval estimate of the population parameter is known as the
a. confidence level
b. margin of error
c. parameter estimate
$M=\bar{x} \pm$ margin of error
d. interval estimate

ANS: B
6. The (2yalue for a 97.8% confidence interval estimation is
a. $\quad 2.02$

$$
2.2 \%=.022
$$

b. 1.96

$$
\alpha=.0^{22} \rightarrow \alpha_{2}=.011
$$

$$
5-.011=.489 \rightarrow
$$

c. 2.00
(d.) 2.29

ANS: D
7. The t value for a 95% confidence interval estimation with (24) degrees of freedom is
a. 1.711
(b) 2.064
c. 2.492
d. $2.069=2.064$

ANS: B

8. As the sample size increases, the margin of error

Variance \downarrow
a. increases
(b.) decreases
c. stays the same
d. increases or decreases depending on the size of the mean

ANS: B

9. A sample of 225 elements from a population with a standard deviation of 75 is selected. The sample mean is
M 180. The 650 confidence interval for μ is
a. $\quad 105.0$ to 225.0
b. $\quad 175.0$ to 185.0
$\alpha=.05 \quad \frac{\alpha}{2}=.025$
c. $\quad 100.0$ to 200.0
(d.) 170.2 to 189.8

ANS: D

$$
\begin{aligned}
\alpha & =.05: \frac{\alpha}{2}=.025 \\
& =2.064
\end{aligned}
$$

13. It is known that the population variance equals 484 . With a 0.95 probability, the sample size that needs to be taken if the desired margin of error is 5 or less is
a. 25
b. 74
c. 189
d. 75

ANS: D
14. The following random sample from a population whose values were normally distributed was collected.

$$
\begin{array}{llll}
10 & 12 & 18 & 16
\end{array}
$$

The 80% confidence interval for μ is
a. $\quad 12.054$ to 15.946
b. $\quad 10.108$ to 17.892
c. $\quad 10.321$ to 17.679
d. $\quad 11.009$ to 16.991

ANS: D

15. In a random sample of 144 observations, $\overline{\mathrm{p}}=0.6$. The 95% confidence interval for P is
a. $\quad 0.52$ to 0.68
b. 0.144 to 0.200
c. 0.60 to 0.70
d. 0.50 to 0.70

ANS: A

16. In a random sample of 100 observations, $\overline{\mathrm{p}}=0.2$. The 95.44% confidence interval for P is
a. 0.122 to 0.278
b. 0.164 to 0.236
c. 0.134 to 0.266
d. 0.120 to 0.280

ANS: D

Exhibit 8-1

In order to estimate the average time spent on the computer terminals per student at a local university, data were collected for a sample of 81 business students over a one-week period. Assume the population standard deviation is 1.8 hours.
17. Refer to Exhibit 8-1. The standard error of the mean is
a. 7.50
b. 0.39
c. 2.00
d. 0.20

ANS: D
18. Refer to Exhibit 8-1. With a 0.95 probability, the margin of error is approximately
a. $\quad 0.39$
b. 1.96
c. 0.20
d. 1.64

ANS: A
19. Refer to Exhibit 8 -1. If the sample mean is 9 hours, then the 95% confidence interval is
a. 7.04 to 110.96 hours
b. 7.36 to 10.64 hours
c. 7.80 to 10.20 hours
d. 8.61 to 9.39 hours

ANS: D

CHAPTER: 9: testing hypotheses \rightarrow one mean M important means: we have two arguments (hypotheses):

1. null hypotheses (HO) represents the general pointriew; beleived to be true
2. Alternative Hypothes is $\left(H_{1}, H_{a}\right)$: Challenging statement, 5 disagrees with null.

So, we need to test to validate the hypo: this is done by talking a sample s running a test to reach "Decision".

* any decision made can be good or bad: So, we have 2 good Vs 2 bod:
* Good ones:.

1. accept the null Ho when it's true
2. reject the null Ho when it's false

* Bad decisions:-

1. accept the null Ho when it's false
2. reject the null Ho when it's true

Decision Table:.

Decision	Ho true	Ho falso
Accept	Good decision	type I error Ho Hon (type I)
Reject	Type I error	Good decision
HO	probstype I) $=\alpha$	

α is more bad
"w eire trying to Reject"
How can we run the test?
\rightarrow we use one of two methods (approaches):.

1. Critical value approach (4steps)
2. p. value approach
$\rightarrow 1$ Critical value Approach (4-Steps)
3. Stale the hypotheses: write the correct $\mathrm{Ho}_{1} \mathrm{H}_{1}$
$\rightarrow H_{0}: M=M_{0}: H_{1}: M>M_{0} \rightarrow$ right-sided "upper tail"
or $H_{1}: M L M O \rightarrow$ left-sided "lower tail"
or $H_{1}: M \neq M 0 \rightarrow$ two-sided "two tail"
4. Find "test statistics" \rightarrow an indicater found using sample data.
a. σ k own: Z statistics $=\frac{\bar{X}-M_{0}}{\frac{\sigma}{\sqrt{n}}}$
D. σ unknown :t statistics $=\frac{\bar{x}-M_{0}}{\frac{5}{\sqrt{n}}}$
5. Create "critical region"
\rightarrow Show within the z or t graph in which part you can accept the null \dot{s} in which part you can reject the null (depends on: α, type of test)

b. left-sided <

$$
\text { C: two-sided } \neq
$$

4. Make your "decision"
\rightarrow Check where is the "test statistic" going to fall within the critical region.
egg: test if the population mean is bigger than 12 when a sample of 25^{n} gave an average $\stackrel{\bar{X}}{=} 14$, Knowing that st div of $30 p$ $\sigma=4.32(\alpha=.05: 5 \%)$. Apply the 4 steps:.

1. $H_{0}: M=12$

$$
H_{1}: M>12
$$

2. test stat
3. Critical Rejon

4. Decision: Reject Ho at $\alpha=5 \%$ since 2.31 is >1.65 where it falls under the rej side

$$
\ln \text { case } \alpha=1 \%:
$$

 accept the Ho at $\alpha=1 \%$.
when its $>$ or $\langle\rightarrow$ check \bar{x} $\bar{x}>$ Hoprove move
eg: test if the population mean is different from $l 18$ when a sample k of 49^{n} items shows an avarege $=17^{\pi}$ with st. Div $=4.5(\alpha=5 \%)$.
1.

$$
\begin{aligned}
& H_{0}: M=18 \\
& H_{1}: M \neq 18
\end{aligned}
$$

2. test "Statistics" t-Stat since σ is unknown

$$
t \text {-stat }=\frac{\bar{x}-M_{0}}{\frac{5}{\sqrt{n}}}=\frac{17-18}{\frac{4.5}{\sqrt{49}}}=1.55
$$

3. Critical reg $\alpha=.05: 5 \% \rightarrow \frac{\alpha}{2}$ on the right. $\frac{\alpha}{2}$ the other half

4. Decision

Accept Ho at $\alpha=5 \%$ since it falls between (1.96,1.96)
eg: test if the population mean is less than 45 or no using a sample of 36 items that shows an average $=43$, (Cowing that $\sigma=4.6(\alpha=5 \%)$ sample ms 43
show
$=$ 1. State the hypo

HO: $M=45$

$$
H_{1}: \quad M<45
$$

2. test Stat

$$
z=\frac{\bar{x}-M_{0}}{\frac{\sigma}{\sqrt{n}}}=\frac{43-45}{\frac{46}{\sqrt{36}}}=-2.61
$$

3. Critical reg $M<43 \rightarrow$ left sided

4. Decision
-2.61.
Rep fart... Reject the "Ho" since it falls under

* what if $\alpha=10 \%$ in this Ese? reject without thinking... cur when you reject at a certain level of α, you reject all other high levels; however, when its less than the certain α, you need to test it again...
$Z^{\text {nd }}$ Approach (P-vabilitye) important
P. value is area under the curve erection area according to "test statics". we will calculate the res part...
Decision: convert prague into $\alpha\left(1 ; 5^{*}, 10^{*}\right)$
\rightarrow Pvalue $>\alpha$: accept Ho
$\rightarrow P$-value $\leqslant \alpha$: reject H_{o}

Fincling!' calculating the p-vale: it depend on σ if it known or unknown

1. σ is known

- P-value is found using z statistics
\rightarrow P value will be an area, within the \geq distribution
a. right-side:
z rat has to be positive (+)

$$
P(z>z \text { stent })
$$

b. left-sicle:
z stat has to be negative (-)

$$
p(z<z \text { stat })
$$

R value

C. two-side:
z stat can be + or - , depends on the sample...

2. σ is unkoncun
p-rake depends on t-statistics
\leftrightarrow found on "interval"
\rightarrow will be found from "t-table"
b it will use : t stat \dot{s} af $(n-1)$
Note: in case this is two sided test, we multiply the interval by 2.
eg: assume the following test:

$$
\begin{aligned}
& H_{0}: M=50 \\
& H_{1}: M \neq 50
\end{aligned}
$$

Zstatistics: 2.63
find the p-value's write the decision...

$$
\begin{aligned}
& P \text {-value }=2(1 / 2-p(z>2.63)) \\
&=2(1 / 2-.4957)=.0086 \rightarrow .86 \%
\end{aligned}
$$

Decision:

$$
P \text {-value }\left\langle\alpha=1 \% \rightarrow R_{e j} \text { jct Ho at } \alpha=1 \%\right. \text {. }
$$

eg: assume the following test

$$
\begin{gathered}
H_{0}: M=500 \\
H_{1}: M>500 \\
t-\text { stat }=1.46, n=20
\end{gathered}
$$

find the P-value 3 write the Decision t-table off $=F_{1}$

$$
P \text {-value }=\text { between } .05 \text { !. } 1
$$

\rightarrow within this range pralue $\left\langle\alpha^{\prime}=10 \%\right.$
\rightarrow reject the Ho at $\alpha=10 \%$

Gulf University for Science \& Technology
 Department of Economics \& Finance ECO-380: Business Statistics

Dr. Khalid Kisswani
Room: N1-116
Tel: 2530-7339
kisswani.k@gust.edu.kw

Assignment 4 (LO iii)

1. The probability of committing a Type I error when the null hypothesis is true is
a. the confidence level x
b. $\beta \rightarrow$ Type \|
c. greater than $1 \times$
(d.) the Level of Significance α
2. The p-value is a probability that measures the support (or lack of support) for the
a. null hypothesis
b. alternative hypothesis
c. either the null or the alternative hypothesis
d. sample statistic
3. A Type II error is committed when 1 Ho when it's x
a. a true alternative hypothesis is mistakenly rejected
b. a true null hypothesis is mistakenly rejected
c. the sample size has been too small
(d.) a false null hypothesis is mistakenly accepted
4. The probability of making a Type I error is denoted by
(a) α
b. β
c. $1-\alpha$
d. $1-\beta$
5. The probability of making a Type II error is denoted by
(b. β
c. $1-\alpha$
d. $1-\beta$
6. When the following hypotheses are being tested at a level of significance of α

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu \geq 500 \\
& \mathrm{H}_{\mathrm{a}}: \mu<500
\end{aligned}
$$

the null hypothesis will be rejected if the p-value is
(a.) $\leq \alpha$
b. $>\alpha$
c. $>\alpha / 2$
d. $\leq 1-\alpha / 2$

$$
\begin{aligned}
& \text { P.V }>\alpha \rightarrow \text { accept } \\
& \text { P.V } \leqslant \alpha \rightarrow \text { reject } .
\end{aligned}
$$

7. In order to test the following hypotheses at an α level of significance

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu \leq 800 \\
& \mathrm{H}_{\mathrm{a}}: \mu>800
\end{aligned}
$$

the null hypothesis will be rejected if the test statistic Z is
(a.) $\geq \mathrm{Z}_{\alpha}$
b. $<Z_{\alpha}$
c. $<-Z_{\alpha}$
d. $=\alpha$
8. For a lower bounds one-tailed test, the test statistic z is determined to be zero. The p-value for this test is
a. zero
b. -0.5
c. +0.5
d. 1.00
9. In a two-tailed hypothesis test situation, the test statistic is determined to be $\mathrm{z}=-2.69$. The sample size has been 45 . The p-value for this test is
a. $0 . \overline{0} 036$
b. +0.005
c. -0.01
(d.) +0.0072

$$
\begin{aligned}
& 1 / 2-p(-2.69<z<0) \\
& 1 / 2-.4=.0036 \\
& \rightarrow 2^{*} .0036=
\end{aligned}
$$

(10) In a lower one-tail hypothesis test situation, the p-value is determined to be 0.22. If the sample size for this test is 51 , the z statistic has a value of
$\begin{array}{ll}\text { a. } & 0.78 \\ \text { (ロ.) } & -0.78\end{array}$
$1 / 2-.22=.28$
c. 0.59
d. -0.59

11. If a hypothesis is rejected at the 5% level of significance, it
a. will always be rejected at the 1% level X
b. will always be accepted at the 1% level X
nj at all higher
c. will never be tested at the 1% level X
(d. may be rejected or not rejected at the 1% level $\sqrt{ }$
12. For a one-tailed test (lower tail) at 93.7% confidence, $Z=\quad \alpha=6.3 \%$
a. -1.86
(b.) -1.53
c. -1.96
d. -1.645

13. Read the Z statistic from the normal distribution table and circle the correct answer. A one-tailed test (upper tail) at 87.7% confidence; $\mathrm{Z}=$
a. 1.54

$$
\alpha=12.3 \%
$$

b. 1.96

$$
.5-.123=.377
$$

c. 1.645
(d.) 1.16
14. In a two-tailed hypothesis test the test statistic is determined to be $Z=-2.5$. The p-value for this test is
a. -1.25
b. 0.4938

$$
\begin{aligned}
& .5-p(-2 . \overline{5}<z<0) \\
& .5-.4438=.0062 * z=
\end{aligned}
$$

c. 0.0062
(d.) 0.0124
15. In a one-tailed hypothesis test (lower tail) the test z-statistic is determined to be -2 . The p-value for this test is
a. $0.47 \overline{72}$
(b.) 0.0228
c. 0.0056
d. 0.5228

$$
\begin{aligned}
& 1 / 2-p(-2<z<0) \\
& 1 / 2-.4772=
\end{aligned}
$$

Exhibit 9-1

$\mathrm{n}=36 \quad \overline{\mathrm{x}}=24.6 \quad \mathrm{~S}=12$
16. Refer to Exhibit 9-1. The test statistic is

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu \leq 20 \\
& \mathrm{H}_{\mathrm{a}}: \mu>20 \\
& =
\end{aligned} \quad \text { t-stat }=\frac{24.6-20}{\frac{12}{\sqrt{36}}}=2.3
$$

(a.) 2.3
b. $\quad 0.38$
c. -2.3
d. $\quad-0.38$
17. Refer to Exhibit 9-1. The p-value is between
a. 0.005 to 0.01
(b.) 0.01 to 0.025
c. 0.025 to 0.05
d. 0.05 to 0.10

$1 \%, 2.5 \%$
18. Refer to Exhibit 9-1. If the test is done at 95% confidence, the null hypothesis should
a. not be rejected
(b.) be rejected $\alpha=.05 \quad X$
c. Not enough information is given to answer this question.
d. None of these alternatives is correct.

Exhibit 9-4

The manager of a grocery store has taken a random sample of 100 customers. The average length of time it took the customers in the sample to check out was $3.1^{\bar{x}}$ minutes with a standard deviation of 0.5 minutes. We want to test to determine whether or not the mean waiting time of all customers is significantly more than 3 minutes. 19. Refer to Exhibit 9-4. The test statistic is
a. 1.96
b. 1.64
(c.) 2.00
d. 0.056

$$
t=\frac{3.1-3}{\frac{.5}{\sqrt{100}}}=
$$

$$
\begin{aligned}
& H_{0}=m=3.1 \\
& H_{1}=m \succ 3
\end{aligned}
$$

20. Refer to Exhibit 9-4. The p-value is between
a. . 005 to .01
b. .01 to .025
c. .025 to .05
d. . 05 to .10
21. Refer to Exhibit 9-4. At 95% confidence, it can be concluded that the mean of the population is
a. significantly greater than $3-$
b. not significantly greater than 3

c. significantly less than 3
d. significantly greater then 3.18

Exhibit 9-8

The average gasoline price of one of the major oil companies in Europe has been $\$ 1.25$ per liter. Recently, the company has undertaken several efficiency measures in order to reduce prices. Management is interested in determining whether their efficiency measures have actually reduced prices. A random sample of 49 of their gas stations is selected and the average price is determined to be $\$ 1.20$ per liter. Furthermore, assume that the standard deviation of the population (σ) is $\$ 0.14$.
22. Refer to Exhibit 9-8. The standard error has a value of
a. 0.14
b. 7
c. 2.5

(d.) 0.02
23. Refer to Exhibit 9-8. The value of the test statistic for this hypothesis test is
a. 1.96
b. 1.645
(c.) -2.5
d. -1.645
24. Refer to Exhibit 9-8. The p-value for this problem is
a. 0.4938
(b) 0.0062
c. 0.0124

$$
\text { d. } 0.05
$$

$$
\begin{gathered}
.5-.4938=.0062 * 100 \\
=.62 \%
\end{gathered}
$$

CHAPTER 10: Inference about two Population means (MI ${ }^{\text {MM 2). }}$
Two population means: we talk about the diffeverice between them $\left(M_{1}-M_{2}\right)$.

Two topics will be covered.

1. Estimation of $\left(M_{1}-M_{2}\right)$
2. Testing hypothesis ($m_{1}-m_{2}$)
\rightarrow Estimation of $M_{1}-M_{2}$:
M_{1}, M_{2} are unknown 3 hard to find. So, we tulle two samples $\left(m_{1} ; m_{2}\right)$!' Find $\bar{x}_{1} ; \bar{x}_{2}$. Then, we use $\bar{x}_{1}^{\prime} ? \bar{x}_{2}$ to estimcire $\left(m_{1}\right.$ i $\left.m_{2}\right)$.

Estimation is done as:
a. Point estimation or
b. interval estimation
a. Point estimation :

$$
\left(M_{1}-M_{2}\right)=\left(\bar{x}_{1}-\bar{x}_{2}\right) \rightarrow \text { point estimate }
$$

b. Interval estimation

$$
\begin{aligned}
& \left(m_{1}-m_{2}\right)=\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm \text { margin of error }
\end{aligned}
$$

$$
\begin{aligned}
& \left(\bar{x}_{1}-\bar{x}_{2}\right)
\end{aligned}
$$

2. $\sigma_{1} 3 \sigma_{2}$ unknown

$$
\begin{aligned}
& \left(m_{1}-m_{2}\right)=\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t_{\frac{\alpha}{2}} d f \cdot \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}} \\
& d f=n_{1}+n_{2}-2 \rightarrow \sigma_{1}=\sigma_{2}, d f=\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{1}{n_{1}-1}\left(\frac{s_{1}^{2}}{n_{1}}\right)+\frac{1}{n_{2}-1}\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}} \rightarrow \sigma_{1} \neq \sigma_{2}
\end{aligned}
$$

eg: Create a 95% Confidence interval for the difference between the two population means, given the following information...

$$
\begin{aligned}
&\left(m_{1}-m_{2}\right)=\left(\bar{X}_{1}-\bar{x}_{2}\right) \pm z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} \\
& \alpha=.05 \rightarrow \frac{\alpha}{2}=.025 \\
&\left(m_{1}-m_{2}\right)=(275-258) \pm 1.96 \sqrt{\frac{115)^{2}}{120}+\frac{(20)^{2}}{80}} \\
&=17 \pm 5.14 \rightarrow(11.86,22.14) \\
& \vdots\left(m_{1}-m_{2}\right) \\
& 11.86
\end{aligned}
$$

2. Testing hypotheses for two mains $\left(M_{1}-M_{2}\right)$
\rightarrow we have a null H_{0} : no difference; we will challange that using "Alternative H_{1} ". Then we take Samples 3 run the test through:
a. 4 steps approach (critical value)
b. P-Value approach
a. 4-steps:
3. H_{0} vs. H_{1}
$H_{0}: M_{1} M_{2}=0$
$H_{1}: M_{1}-M_{2}>0 \rightarrow$ right side
or: $H_{1}: M_{1}-M_{2}<O \rightarrow$ leffside
or: $H_{1}: M_{1}-M_{2} \neq 0 \rightarrow$ two side
4. test statistics

$$
\begin{aligned}
& a: \sigma_{1} ; \sigma_{2} \text { known: z stat }=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}} \\
& b: \sigma_{1} ; \sigma_{2} \text { unknown: tstat }=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{s_{1}^{2}}{n}+\frac{s_{2}^{2}}{n}}}
\end{aligned}
$$

3. Critical region (using $\overline{=}$)
4. right side
5. left side
6. two side

7. Decision based on the value extracted in step $2 \ldots$
b: P-value approach: Just like before
eg: test if the Pquikion mean (1) is bigger than the population mean (2), using the following info..

	Sample,	Sample	
Size (n)	40	50	
Mean (\bar{x})	25.2	22.8	$\alpha=1 \%$
σ	5.2	6	

1. $H_{0}: M_{1}-M_{2}=0 \quad H_{1}: M_{1}-M_{2}>0$
2. Z stat $=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{\sigma_{1}^{2}}{n}+\frac{\sigma_{n}^{2}}{n}}}=\frac{25.2-22.8}{\sqrt{\frac{153^{2}}{40}+\frac{(6)^{2}}{50}}}=2.03$ Zstat
3. Critical region \propto

first value records (.49) from the z table. $\begin{aligned} & z=01 \\ & 2.33\end{aligned}$ which is 2.33 .
4. Decision is accept the $H_{0} @ \alpha=1 \%$ since it falls under the acceptance area.

* P-value

$$
\begin{aligned}
p(z>2.03) & =1 / 2-p(0<z<2.03) \\
& =1 / 2-.4788=.0212 \rightarrow 2.12 \%
\end{aligned}
$$

p. value $\langle\alpha=5 \%$; reject the Ho at $\alpha=5 \%$
eg: assume the following:

$$
\begin{aligned}
& H_{0}: M-M_{1}^{2}=0 \\
& H_{1}: M_{1}-M_{2} \neq 0
\end{aligned}
$$

using the following DATA, kun the test @ $\alpha=5 \%$

	Sam	Sam 2
n	80	70
\bar{x}	104	106
s	84	7.6

4 steps 1.

$$
\begin{aligned}
& H_{0}: m_{1}-m_{2}=0 \\
& H_{1}: m_{1}-m_{2} \neq 0
\end{aligned}
$$

2. tstat $=\frac{104-106}{\sqrt{\frac{1844^{2}}{80}+\frac{(7.6)^{2}}{70}}}=-1.53$
3.

$$
\alpha=.05, \begin{aligned}
d f & =80+70-2 \\
& =148
\end{aligned}
$$

4. Accept the Ho since it falls under the acceptance part @ $\alpha=5 \%$

NOTE 8 when you accept a at certain lever, you accept all lower levels; however, when you reject α @certain level, you reject all higher levels.
P. value opprocich: \rightarrow table, inf level since 148 , pick the interval that 1.53 falls between.
2 (between : 500.1)

$$
(.1, .05)
$$

- between 1 3. 2^{1}
P-vale $>\alpha=10 \%$; accept the Ho @ 10%
eg: Sample of male is female salary information is given below:

	male	female
\cap	64	36
\bar{X}	44	41
σ^{2}	128	72

at $\alpha=5 \%$, is there evidence that male are paid mare than female on average
4-steps:
1.

$$
\begin{aligned}
& H_{0}: m_{m}-m_{f}=0 \\
& H_{1}: m_{m}-m_{f}>0
\end{aligned}
$$

2.

$$
z \text { stat }=\frac{44-41}{\sqrt{\frac{128}{64}+\frac{72}{36}}}=1.5
$$

3.

p. value
 we are trying to reject Ho

$$
\begin{aligned}
P \text { value }=p(z>\mid .5) & \Rightarrow 1 / 2-p(0<z<1.5) \\
& =5-.4332=.0668 \rightarrow 6.68 \%
\end{aligned}
$$

\rightarrow reject the Ho at $\alpha=10 \%$ since P. value $\langle\alpha=10 \%$

Gulf University for Science \& Technology
 Department of Economics \& Finance
 ECO-380: Business Statistics

Dr. Khalid Kisswani
Room: N1-116
Tel: 2530-7339
kisswani.k@gust.edu.kw

Assignment 5 (LO iii)

1. When developing an interval estimate for the difference between two sample means, with sample sizes of n_{1} and n_{2},
a. n_{1} must be equal to $n_{2} X$
b. n_{1} must be smaller than n_{2}
c. n_{1} must be larger than n_{2}
(d.) n_{1} and n_{2} can be of different sizes,
2. To construct an interval estimate for the difference between the means of two populations when the standard deviations of the two populations are unknown and it can be assumed the two populations have equal variances, we must use a t distribution with (let n_{1} be the size of sample 1 and n_{2} the size of sample 2)
a. $\left(n_{1}+n_{2}\right)$ degrees of freedom
b. $\left(n_{1}+n_{2}-1\right)$ degrees of freedom
c. $\left(n_{1}+n_{2}-2\right)$ degrees of freedom
d. None of the above

Exhibit 10-1

Salary information regarding male and female employees of a large company is shown below.

3. Refer to Exhibit 10-1. The point estimate of the difference between the means of the two populations is
a. -28
(b.) 3
c. 4
$\bar{x}_{1}-\bar{x}_{2}=44-41=3$
d. -4
4. Refer to Exhibit 10-1. The standard error for the difference between the two means is
a. 4
b. 7.46
c. 4.24
(d.) 2.0

$$
=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma^{2}}{n_{2}}}=\sqrt{\frac{128}{64}+\frac{72}{36}}=2
$$

5. Refer to Exhibit 10-1. At 95% confidence, the margin of error is
a. $\quad 1.96$
b. 1.645
c. 3.920
d. 2.000

$$
\begin{gathered}
z_{\frac{x}{2}}=5-.025=.475 \Rightarrow 1.96 \\
1.96 * 2=
\end{gathered}
$$

6. Refer to Exhibit 10-1. The 95\% confidence interval for the difference between the means of the two populations is
a. 0 to 6.92
b. -2 to 2
-1.96 to 1.96

$$
3 \pm 1.96^{*} 2
$$

d.) -0.92 to 6.92

$$
=-.92,6.92
$$

7. Refer to Exhibit 10-1. If you are interested in testing whether or not the average salary of males is significantly greater than that of females, the test statistic is \qquad
a. 2.0
(b.) 1.5

$$
M_{\underline{m}-M_{F}}>0
$$

c. 1.96
d. 1.645

$$
z=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\sigma^{2}} n_{2}}
$$

8. Refer to Exhibit 10-1. The p-value is
a. 0.0668
b. 0.0334
c. 1.336
d. 1.96
$\begin{aligned} & \text { Stat } \\ & 1 / 2-P(0<z<1.5) \\ & 4332\end{aligned}$
$\begin{aligned} & \text { \% confidence, the conclusion is the } \\ & \text { significantly greater than females } \\ & \text { significantly lower than females } x \\ & \text { les are not equal } \\ & \text { is correct. }\end{aligned}$
reject

Exhibit 10-2

The following information was obtained from matched samples.
The daily production rates for a sample of workers before and after a training program are shown below.
9. Refer to Exhibit 10-1. At 95\% confidence, the conclusion is the
a. average salary of males is significantly greater than females
b. average salary of males is significantly lower than females x
c. salaries of males and females are not equal
(d.) None of these alternatives is correct.

$$
=\frac{44-41}{\sqrt{\frac{128}{64}+\frac{72}{36}}}=1.5
$$

Worker
1
2
3
4
5
6
7

Before	After
20	22
25	23
27	27
23	20
22	25
20	19
$17 \bar{x}_{1}=22$	18

10. Refer to Exhibit 10-2. The point estimate for the difference between the means of the two populations is
a. -1
b. -2
c. 0
d. 1
11. Refer to Exhibit 10-2. The null hypothesis to be tested is $\mathrm{H}_{0}: \mu_{1}-\mu_{2}=0$. The test statistic is
a. -1.96
b. 1.96
©. 0
d. 1.645
12. Refer to Exhibit 10-2. Based on the results of question 11 and 5% significance level, the
a. null hypothesis should be rejected
(b) null hypothesis should not be rejected
c. alternative hypothesis should be accepted
d. None of these alternatives is correct.

$\neq \quad$ Exhibit 10-3

A statistics teacher wants to see if there is any difference in the abilities of students enrolled in statistics today and those enrolled five years ago. A sample of final examination scores from students enrolled today and from students enrolled five years ago was taken. You are given the following information.

	Today	Five Years Ago
$\overline{\mathrm{x}}$	82	88
σ^{2}	112.5	54
n	45	36

13. Refer to Exhibit 10-3. The point estimate for the difference between the means of the two populations is
a. 58.5
b. 9
c. -9
(d.) -6
14. Refer to Exhibit 10-3. The standard error of $\overline{\mathrm{x}}_{1}-\overline{\mathrm{x}}_{2}$ is
a. $\quad 12.9$
b. 9.3
c. 4
d. 2

15. Refer to Exhibit 10-3. The 95% confidence interval for the difference between the two population means is (a.) -9.92 to -2.08
b. -3.92 to 3.92
c. -13.84 to 1.84
d. -24.228 to 12.23

$$
\begin{array}{r}
z_{\alpha}=.5-.025=.475 \Rightarrow 1.96 \\
-6 \pm 1.96^{*} 2=-9.92,-2.08
\end{array}
$$

16. Refer to Exhibit 10-3. The test statistic for the difference between the two population means is
a. -. 47
b. -.65
c. -1.5
(d.) -3

$$
z=\frac{-6}{2}=-3
$$

17. Refer to Exhibit 10-3. The p-value for the difference between the two population means is
a. . 0013
b. .0026
c. .4987
d. . 9987

$$
\begin{array}{r}
2(1 / 2-P(-3<z<0)) \\
.4987=2(.0013) \quad<1 \% \text { reject }
\end{array}
$$

18. Refer to Exhibit 10-3. What is the conclusion that can be reached about the difference in the average final examination scores between the two classes? (Use a .05 level of significance.)
a. There is a statistically significant difference in the average final examination scores between the two classes.
b. There is no statistically significant difference in the average final examination scores between the two classes. x accept
c. It is impossible to make a decision on the basis of the information given. X
d. There is a difference, but it is not significant.

Exhibit 10-4

The following information was obtained from independent random samples.
Assume normally distributed populations with equal variances.

		Sample 1
Sample Mean \bar{X}		45
Sample Variance	S^{2}	85
Sample Size n	10	42
Sample 2		
	10	90
		12

19. Refer to Exhibit 10-4. The point estimate for the difference between the means of the two populations is
a. 0
b. 2
20. Refer to Exhibit 10-4. The standard error of $\overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{2}$ is
a. 3.0
(b.) 4.0
c. 8.372
d. 19.48

21. Refer to Exhibit 10-4. The degrees of freedom for the t -distribution are
a. 22
b. 23

$$
10+12-2=
$$

c. 24
d. 20
22. Refer to Exhibit 10-4. The 95% confidence interval for the difference between the two population means is
a. -5.372 to 11.372
$t .025,20=2.086$
b. $\quad-5$ to 3
c. $\quad-4.86$ to 10.86

$$
3 \pm 2.086(4)=-53-11.3
$$

d. -2.65 to 8.65

Exhibit 10-6
The management of a department store is interested in estimating the difference between the mean credit purchases of customers using the store's credit card versus those customers using a national major credit card. You are given the following information.
Sample size n
Sample mean K
Population standard deviation σ

Store's Card
64
\$140
\$10

Major Credit Card

49
\$125
\$8
23. Refer to Exhibit 10-6. A point estimate for the difference between the mean purchases of the users of the two credit cards is
a. 2
b. 18
c. 265
(d.) 15
24. Refer to Exhibit 10-6. At 95% confidence, the margin of error is
(b.) 1.694
c. 1.96
d. 15

25. Refer to Exhibit 10-6. A 95\% confidence interval estimate for the difference between the average purchases of the customers using the two different $\overline{\text { credit cards is }}$
a. 49 to 64
(b.) 11.68 to 18.32
c. $\quad 125$ to 140
d. 8 to 10

Exhibit 10-9
Two major automobile manufacturers have produced compact cars with the same size engines. We are interested in determining whether or not there is a significant difference in the MPG (miles per gallon) of the two brands of automobiles. A random sample of eight cars from each manufacturer is selected, and eight drivers are selected to drive each automobile for a specified distance. The following data show the results of the test.

Driver	Manufacturer A	Manufacturer B
1	32	28
2	27	22

3	26	27
4	26	24
5	25	24
6	29	25
7	31	28
8	25	27

26. Refer to Exhibit 10-9. The mean for the differences is
a. 0.50
b. 1.5
(c.) 2.0

$$
\begin{aligned}
& \bar{x}_{1}-\bar{x}_{2} \\
& 27.625-25.625=2
\end{aligned}
$$

27. Refer to Exhibit 10-9. The test statistic is
a. 1.645
b. 1.96

2
c. 2.096
d. 1.616
28. Refer to Exhibit 10-9. At 90% confidence the null hypothesis
a. should not be rejected
b. should be rejected
c. should be revised
d. None of these alternatives is correct.

CHAPTER 118 Inference about population variance $\left(\sigma^{2}\right)$
well cover:

1. Estimation of σ^{2}
2. Testing hypotheses \rightarrow one variance
3. Testing hypotheses \rightarrow two variances
4. Estimation of $\sigma^{2}(\sigma)$
$\rightarrow \sigma^{2}$ is unknown 3 hard to find. So, we need to estimate σ^{2} * We need to introduce a new distribution Chi - squared " x "

Chi-samered is not symmetric, but skewed to the right.

$$
\text { as } \cap 4 \rightarrow \text { Skewness } \downarrow
$$

$x^{2} \rightarrow$ There's a table that reports Critical chi-spuered values..
"Critical x^{2} value" depends on: Af, the area under the carve to the right
Note: if $d f$ int available on the table, you go to the higher next of. eg: if $d f$ is 31, then it will be 35. However, any af beyond $100(123 \mathrm{~g})$ will be treated as 100 .

* How can we estimate σ^{2} : we take a sample if find s^{2}, then use S^{2} to estimate σ^{2}.

Estimation is done:.

1. point estimation: $\sigma^{2}=5^{2} \rightarrow$ Point estimate of $\sigma^{2} \rightarrow \sigma=(5 \rightarrow$ Point est
2. Interval Estimation:

$$
\frac{(n-1) s^{2}}{x_{\frac{\alpha}{2}}^{2}} \leqslant \sigma^{2} \leqslant \frac{(n-1) s^{2}}{x_{1-\frac{\alpha}{2}}^{2}} \Rightarrow \sqrt{\frac{(n-1) s^{2}}{x_{\frac{\alpha}{2}}^{2}} \leqslant \sigma \leqslant \sqrt{\frac{(n-1) s^{2}}{x_{1-\frac{\alpha}{2}}^{2}}} . \sqrt{2}}
$$

TABLE 3 Chi-squared distribution

Entries in the table give χ_{α}^{2} values, where α is the area or probability in the upper tail of the chi-squared distribution. For example, with ten degrees of freedom and 0.01 area in the upper tail, $\chi_{0.01}^{2}=23.209$

Degrees of freedom	Area in upper tail									
	. 995	. 99	. 975	. 95	. 90	. 10	. 05	. 025	. 01	. 005
1	. 000	. 000	. 001	. 004	. 016	2.706	3.841	5.024	6.635	7.879
2	. 010	. 020	. 051	. 103	. 211	4.605	5.991	7.378	9.210	10.597
3	. 072	. 115	. 216	. 352	. 584	6.251	7.815	9.348	11.345	12.838
4	. 207	. 297	. 484	. 711	1.064	7.779	9.488	11.143	13.277	14.860
5	. 412	. 554	. 831	1.145	1.610	9.236	11.070	12.832	15.086	16.750
6	. 676	. 872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	. 989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.647	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.041	19.812	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.401
22	8.643	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289	42.796
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.558
25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.928
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
27	11.808	12.878	14.573	16.151	18.114	36.741	40.113	43.195	46.963	49.645
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.994
29	13.121	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.335

TABLE 3 (Continued)

Degrees of freedom	Area in upper tail											
	.995	.99	.975	.95	.90	.10	.05	.025	.01	.005		
30	13.787	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672		
35	17.192	18.509	20.569	22.465	24.797	46.059	49.802	53.203	57.342	60.275		
40	20.707	22.164	24.433	26.509	29.051	51.805	55.758	59.342	63.691	66.766		
45	24.311	25.901	28.366	30.612	33.350	57.505	61.656	65.410	69.957	73.166		
50	27.991	29.707	32.357	34.764	37.689	63.167	67.505	71.420	76.154	79.490		
55	31.735	33.571	36.398	38.958	42.060	68.796	73.311	77.380	82.292	85.749		
60	35.534	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.379	91.952		
65	39.383	41.444	44.603	47.450	50.883	79.973	84.821	89.177	94.422	98.105		
70	43.275	45.442	48.758	51.739	55.329	85.527	90.531	95.023	100.425	104.215		
75	47.206	49.475	52.942	56.054	59.795	91.061	96.217	100.839	106.393	110.285		
80	51.172	53.540	57.153	60.391	64.278	96.578	101.879	106.629	112.329	116.321		
85	55.170	57.634	61.389	64.749	68.777	102.079	107.522	112.393	118.236	122.324		
90	59.196	61.754	65.647	69.126	73.291	107.565	113.145	118.136	124.116	128.299		
95	63.250	65.898	69.925	73.520	77.818	113.038	118.752	123.858	129.973	134.247		
100	67.328	70.065	74.222	77.929	82.358	118.498	124.342	129.561	135.807	140.170		

eg: Create a 95% confidence interval for the population variance when a sample of 25^{n} gave sample staliviaion $(s)=10^{5}$.

$$
\begin{aligned}
& \frac{(n-1) s^{2}}{x^{2} \frac{2}{2}} \leqslant \sigma^{2} \leqslant \frac{(n-1) s^{2}}{x^{2}-\frac{x}{2}}: \alpha=5 \% \\
& \frac{24(10)^{2}}{x^{2} .025,24} \leqslant \sigma^{2} \leqslant \frac{24(10)^{2}}{x^{2} .975 .24} \Rightarrow \frac{24(10)^{2}}{39.364} \leqslant \sigma^{2} \leqslant \frac{24(10)^{2}}{12.401} \\
& 60.96 \leqslant \sigma^{2} \leqslant 193.5
\end{aligned}
$$

* we are 95% confidant the the population variance " σ " falls between ($60.96-193.5$) .
eg: Create a 90% confidence interval for the population st deviation (σ) when a sample of 16^{n} gave sample vaviancë $5^{2 \prime}=7$

$$
\begin{aligned}
& \sqrt{\frac{(n-1) s^{2}}{x^{2}}} \leqslant \sigma \leqslant \sqrt{\frac{(n-1) s^{2}}{x^{2}}} \quad: \alpha=10 \% \\
& \sqrt{\frac{15(7)}{x^{2} .05}} \leqslant \sigma \sqrt{\frac{15(7)}{x^{2} .95}} \Rightarrow \sqrt{\frac{15(7)}{24.996}} \leqslant \sigma \leqslant \sqrt{\frac{15(7)}{7.261}} \\
& \sqrt{4.2} \leqslant \sigma \leqslant \sqrt{14.5}
\end{aligned}
$$

* were 90% confictent that the population st dovicition " σ " falls between $\sqrt{4.2}-\sqrt{14.5)}$.

2. Testing hypotheses of one variance σ^{2}
\rightarrow we have a null (variance = value), but we will change this using alternative (bigger, smaller, or different.). Then, we take a sample si run the test...
a. 4-steps
b. p. value

4-steps method:.

1. State the hypo

$$
H_{0}: \sigma^{2}=\sigma_{0}^{2}
$$

$$
H_{1}: \sigma^{2}>\sigma_{0}^{2} \rightarrow \text { Right sided }
$$

or $H_{1}: \sigma^{2}<\sigma_{0}^{2} \rightarrow$ Left sided
or $H_{1}: \sigma^{2} \neq \sigma_{0}^{2} \rightarrow$ Two sided
2. Test stat (x^{2} chart)

$$
x^{2} \text { stat }=\frac{(n-1) s^{2}}{\sigma_{0}^{2}}
$$

3. Critical Region: α
a. Right side
b. Left side

C. Two side spit the α

4. Decision
\rightarrow take x^{2} stat value ($\operatorname{step} 2$) 3 look at it within the graph.

F we have to know off is test et id
x^{2} stat (step two)
P. value Method... (you debit need a when using s.i.alue)
x^{2} stat $\overrightarrow{3} \overrightarrow{3}$ if
NOTE 8 if it is a two-sided test using the p. value, you need to multiply by " 2 "
eg: test if the population variance exceeds 50 when a sample of 16^{n} gave a st. deviation $=10(\alpha=1 \%)$

4 steps:
1.

$$
\begin{aligned}
& H_{0}: \sigma^{2}=50 \\
& H_{1}: \sigma^{2}>50 \rightarrow \text { right -sided test }
\end{aligned}
$$

2.

$$
x^{2} \text { stat }=\frac{(n-1) s^{2}}{\sigma_{0}^{2}}=\frac{15(10)^{2}}{50}=30
$$

3.

$$
\alpha=1 \%
$$

4. Decision is Accept the Ho at \mathfrak{c}
p. value:-

$$
d f=15, x^{2} \text { stat }=30
$$

\rightarrow So, go to x^{2} chant of 15 ; find 30 as an interval.

* So, 30 falls between .01 3. 025 ($1 \%-2.5 \%$).

Decision: if we pick a number between the interval $(2 \%) ; p$. value $\langle\alpha=5$. G So, Reject $H_{0} @ \alpha=5 \%$
" σ " we know how to test σ^{2} so we justhave to square the
eg: test if the st. deviation of the population is different from 2^{50} when a sample of 24^{n} gave a variance $=a^{3}(\alpha=51)$.

$$
\rightarrow \sigma=2 \rightarrow \sigma^{2}=2^{2}=4
$$

1. $H_{0}: \sigma^{2}=4$

$$
H_{1}: \sigma^{2} \neq 4
$$

$$
\text { 2. } x^{2} \text { stat }=\frac{(n-1) s^{2}}{\sigma_{0}^{2}}=\frac{23(9)}{4}=51.75
$$

4. Reject the Ho at $\alpha=.55$

Using the P-value approach: two sided *2

$$
H_{0}: \sigma^{2}=4 \quad H_{1}: \sigma^{2} \neq 4 \quad x^{2} \text { stat }=\frac{23(9)}{4}=51.75
$$

Findit as on internal on the table..

$$
\begin{aligned}
\text { P. value } & =2 \text { (less than } .005 \text {) } \\
& =\text { less than } 01 \rightarrow \%
\end{aligned}
$$

Decision is: Reject the Ho at $\alpha=1 \%$ since it is less than $\%$
Assume that $x^{2}=22.8$ using the previous example...

$$
\begin{aligned}
& \rightarrow \text { P. value }=2(\text { between } 113.9) \\
&=(\text { between } 2 \vdots 1) \text { cur the vale (idler } \\
& \text { gees between or (Shouldrit exceed 1) }
\end{aligned}
$$

Decision: bigger than 10\% (Accept the Ho).

Testing hypotheses of two variances... $\left(\sigma_{1}^{2}, \sigma_{2}^{2}\right)$
G we have a null: two variances are equal, but we will challange this using the alternative (bigger, smaller, different)

So, we take a Sample $\dot{\text { i }}$ run the test:.

* 4 steps.

1. $H 0: \sigma_{1}^{2}=\sigma_{2}^{2}$
$H_{1}: \sigma_{1}^{2}>\sigma_{2}^{2} \quad$ right sided
or $H_{1}: \sigma_{2}^{2}>\sigma_{1}^{2}$ right sided σ^{2} family doesnit allow
or $H_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$ us to do the comparision in terms of "Smaller than"
2. test statistics:.

$$
F \text { stat }=\frac{S_{B}^{2}}{S_{s}^{2} \rightarrow \text { bagger } s^{2}}: \text { mare then } \underline{1}
$$

3. Critical region: F table (no negative values...)

F value expends on Z_{2} of

* What sample considered to be 1?
link them, then there will be 5 values (as): : $1,05,025,001$
$(10 \%, 5 \%, 25 \%, 5 \%$
if an exact of is not available (a) \rightarrow you go to the next higher lever is vice versa...
a．right sided

b．two sided

Note：in ane case you use the whole a；the other case you use halfof α ．
4．Decision
＊P－valcie is found from F－table as an interval using Fstat 3 off 3 of 2
eg：use the following DATA to test if variance of population？is different from variance of population？．

	sample，	sample
size	26	16
variant	48	$20: \alpha=5 \%$

4 steps
1．$H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}, H_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$
2．$F_{\text {stat }}=\frac{S_{B}^{2}}{S_{3}^{2}}=\frac{48}{20}=2.4$
3.

4．Reject Ho＠$⿴ 囗 ⿱ 一 一 ⿱ 幺 ⿲ 丶 丶 丶=5 \%$
P. value

$$
\begin{aligned}
& \text { Fstat }=2.4, d f_{1}=25, d f_{2}=15 \\
& \text { P. value }=2(\text { between } 13.025) \\
&=(.23 .05) \\
& \Rightarrow \text { P. value }<\alpha=5 \% \rightarrow \text { veject } \ldots
\end{aligned}
$$

e.g: test if vaviance Pupulation (1) exceeds varance of POP (2) at $\alpha=5 \%$

	Sample,	samplez
n	41	31
s	120	80

4 steps

$$
\begin{aligned}
& \text { Ho: } \sigma_{1}^{2}=\sigma_{2}^{2}, H_{1}: \sigma_{1}^{2}>\sigma_{2}^{2} \\
& \text { Fstat }=\frac{S_{3}^{2}}{S_{s}^{2}}=\frac{(120)^{2}}{(80)^{2}}=2.25
\end{aligned}
$$

reject Ho at $\alpha=5 \%$

$$
\begin{aligned}
& P \text {-value }=2.25(\text { between.001 } 3.01)(.1 \% 31 \%) \\
& \text { P-value }\langle\alpha=1 \% \rightarrow \text { reject } \text { Ho at } \alpha=1 \%
\end{aligned}
$$

F distribution critical value landmarks

Table entries are critical values for F^{*} with probably p in right tail of the distribution.

Figure of F distribution (like in Moore, 2004, p. 656) here.

Critical values computed with Excel 9.0

p			Degrees of freedom in numerator (df1)										
			1	2	3	4	5	6	7	8	12	24	1000
	10	0.100	3.29	2.92	2.73	2.61	2.52	2.46	2.41	2.38	2.28	2.18	2.06
		0.050	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	2.91	2.74	2.54
		0.025	6.94	5.46	4.83	4.47	4.24	4.07	3.95	3.85	3.62	3.37	3.09
		0.010	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.71	4.33	3.92
		0.001	21.04	14.90	12.55	11.28	10.48	9.93	9.52	9.20	8.45	7.64	6.78
	12	0.100	3.18	2.81	2.61	2.48	2.39	2.33	2.28	2.24	2.15	2.04	1.91
		0.050	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.69	2.51	2.30
		0.025	6.55	5.10	4.47	4.12	3.89	3.73	3.61	3.51	3.28	3.02	2.73
		0.010	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.16	3.78	3.37
		0.001	18.64	12.97	10.80	9.63	8.89	8.38	8.00	7.71	7.00	6.25	5.44
	14	0.100	3.10	2.73	2.52	2.39	2.31	2.24	2.19	2.15	2.05	1.94	1.80
		0.050	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.53	2.35	2.14
		0.025	6.30	4.86	4.24	3.89	3.66	3.50	3.38	3.29	3.05	2.79	2.50
		0.010	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	3.80	3.43	3.02
		0.001	17.14	11.78	9.73	8.62	7.92	7.44	7.08	6.80	6.13	5.41	4.62
	16	0.100	3.05	2.67	2.46	2.33	2.24	2.18	2.13	2.09	1.99	1.87	1.72
		0.050	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.42	2.24	2.02
		0.025	6.12	4.69	4.08	3.73	3.50	3.34	3.22	3.12	2.89	2.63	2.32
		0.010	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.55	3.18	2.76
$\underset{\sim}{\mathbb{T}}$		0.001	16.12	10.97	9.01	7.94	7.27	6.80	6.46	6.20	5.55	4.85	4.08
Degrees of freedom in denominator	18	0.100	3.01	2.62	2.42	2.29	2.20	2.13	2.08	2.04	1.93	1.81	1.66
		0.050	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.34	2.15	1.92
		0.025	5.98	4.56	3.95	3.61	3.38	3.22	3.10	3.01	2.77	2.50	2.20
		0.010	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.37	3.00	2.58
		0.001	15.38	10.39	8.49	7.46	6.81	6.35	6.02	5.76	5.13	4.45	3.69
	20	0.100	2.97	2.59	2.38	2.25	2.16	2.09	2.04	2.00	1.89	1.77	1.61
		0.050	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.28	2.08	1.85
		0.025	5.87	4.46	3.86	3.51	3.29	3.13	3.01	2.91	2.68	2.41	2.09
		0.010	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.23	2.86	2.43
		0.001	14.82	9.95	8.10	7.10	6.46	6.02	5.69	5.44	4.82	4.15	3.40
	30	0.100	2.88	2.49	2.28	2.14	2.05	1.98	1.93	1.88	1.77	1.64	1.46
		0.050	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.09	1.89	1.63
		0.025	5.57	4.18	3.59	3.25	3.03	2.87	2.75	2.65	2.41	2.14	1.80
		0.010	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	2.84	2.47	2.02
		0.001	13.29	8.77	7.05	6.12	5.53	5.12	4.82	4.58	4.00	3.36	2.61
	50	0.100	2.81	2.41	2.20	2.06	1.97	1.90	1.84	1.80	1.68	1.54	1.33
		0.050	4.03	3.18	2.79	2.56	2.40	2.29	2.20	2.13	1.95	1.74	1.45
		0.025	5.34	3.97	3.39	3.05	2.83	2.67	2.55	2.46	2.22	1.93	1.56
		0.010	7.17	5.06	4.20	3.72	3.41	3.19	3.02	2.89	2.56	2.18	1.70
		0.001	12.22	7.96	6.34	5.46	4.90	4.51	4.22	4.00	3.44	2.82	2.05
	100	0.100	2.76	2.36	2.14	2.00	1.91	1.83	1.78	1.73	1.61	1.46	1.22
		0.050	3.94	3.09	2.70	2.46	2.31	2.19	2.10	2.03	1.85	1.63	1.30
		0.025	5.18	3.83	3.25	2.92	2.70	2.54	2.42	2.32	2.08	1.78	1.36
		0.010	6.90	4.82	3.98	3.51	3.21	2.99	2.82	2.69	2.37	1.98	1.45
		0.001	11.50	7.41	5.86	5.02	4.48	4.11	3.83	3.61	3.07	2.46	1.64
	1000	0.100	2.71	2.31	2.09	1.95	1.85	1.78	1.72	1.68	1.55	1.39	1.08
		0.050	3.85	3.00	2.61	2.38	2.22	2.11	2.02	1.95	1.76	1.53	1.11
		0.025	5.04	3.70	3.13	2.80	2.58	2.42	2.30	2.20	1.96	1.65	1.13
		0.010	6.66	4.63	3.80	3.34	3.04	2.82	2.66	2.53	2.20	1.81	1.16
		0.001	10.89	6.96	5.46	4.65	4.14	3.78	3.51	3.30	2.77	2.16	1.22

Use StaTable, WinPepi > Whatls, or other reliable software to determine specific p values

Gulf University for Science \& Technology
Department of Economics \& Finance
ECO-380: Business Statistics

Dr. Khalid Kisswani
Room: N1-116
Tel: 2530-7339
kisswani.k@gust.edu.kw

Assignment 6 (LO iii)

1. A sample of 51 elements is selected to estimate a 95% confidence interval for the variance of the population. The chi-square values to be used for this interval estimation are
a. -1.96 and 1.96
(b.) 32.357 and 71.420
c. $\quad 34.764$ and 67.505
d. 12.8786 and 46.9630
2. We are interested in testing whether the variance of a population is significantly less than 1.44. The null Ho: hypothesis for this test is
a. $\mathrm{H}_{0}: \sigma^{2}<1.44$

$$
H_{0}: \sigma^{2}=1.44
$$

b. $H_{0}: \mathrm{s}^{2}=1.44$

$$
H_{1}: \sigma^{2}<1.44
$$

c. $\mathrm{H}_{0}: \sigma<1.20$
(d.) $\mathrm{H}_{0}: \sigma^{2}=1.44$
3. A sample of $\underline{4}^{n}$ observations yielded a sample standard deviation of 5 . If we want to test H_{0} : $\sigma^{2}=20$, the test statistic is
a. 100
b. 10
c. 51.25
$\frac{(n-1) s^{2}}{\sigma_{0}^{2}}=\frac{40^{*} 25}{20}$
(d) 50
4. The value of $F_{0.05}$ with 8 numerator and 19 denominator degrees of freedom is
(a.) 2.45
b. 2.51
c. $\quad 3.12$
d. 3.28
5. The bottler of a certain soft drink claims their equipment to be accurate and that the variance of all filled bottles is 0.05 (or even less). The null hypothesis in a test to confirm the claim would be written as
a. $H_{0}: \sigma^{2} \neq 0.05 \times$

Ho?
b. $H_{0}: \sigma^{2}>0.05 \times$
c. $H_{0}: \sigma^{2}<0.05 \times H_{1}$
(d.) $\mathrm{H}_{0}: \sigma^{2}=0.05$
6. n n S
6. A sample of 20 cans of tomato juice showed a standard deviation of 0.4 ounces. A 95% confidence interval estimate of the variance for the population is
a. 0.2313 to 0.8533
b. 0.2224 to 0.7924
c. 0.3042 to 0.5843
(d.) 0.0925 to 0.3413

$.341 \leqslant \sigma^{2} \leqslant .092$
7. The manager of the service department of a local car dealership has noted that the service times of a sample of $\cap 15$ new automobiles has a standard deviation of 4 minutes. A 95% confidence interval estimate for the variance of service times for all their new automobiles is S
a. 8.576 to 39.796
b. 4 to 16
c. 4 to 15
d. 2.93 to 6.31

8. The manager of the service department of a local car dealership has noted that the service times of a sample of 30 new automobiles has a standard deviation of 6 minutes. A 95% confidence interval estimate for the standard deviation of the service times for all their new automobiles is
a. $\quad 16.047$ to 45.722
b. 4.778 to 8.066
c. 2.93 to 6.31
(d.) 22.833 to 65.059

9. The producer of a certain medicine claims that their bottling equipment is very accurate and that the standard deviation of all their filled bottles is 0.1 ounce or less. A sample of 20 bottles showed a standard deviation of 0.11 . The test statistic to test the claim is $=\sigma$
a. 400
(6.) 22.99
c. 4.85
d. 20

10. The producer of a certain bottling equipment claims that the variance of all heir filled bottles is 0.027 or less. A sample of 30 bottles showed a standard deviation of 0.2 . The p-value for the test is
a. between 0.025 to 0.05
b. between 0.05 to 0.01
c. 0.05 X
d. 0.025 x

$$
\frac{29(.2)^{2}}{.027}=42.96
$$

11. The chi-square values (for interval estimation) for a sample size of 21 at 95% confidence are
a. 9.591 and 34.170
b. $\quad 2.700$ and 19.023
c. 8.260 and 37.566
d. -1.96 and 1.96

12. The chi-square value for a one-tailed (right tail) hypothesis test at 95% confidence and a sample size of 25 is
a. 33.196
b. 36.415
c. $\quad 39.364$
d. 37.652
13. The chi-square value for a one-tailed test (left tail) when the level of significance is 0.1 and the sample size is 15 is
a. 21.064
b. 23.685

$$
\left.\begin{array}{ll}
1-\alpha & =9 \\
& \text { of }=14
\end{array}\right]=
$$

Exhibit 11-1

σ
Last year, the standard deviation of the ages of the students at UA was 1.8 years. Recently, a sample of 61 students had a standard deviation of 2.T years. We are interested in testing to see if there has been a significant change in the standard deviation of the ages of the students at UA.
14. Refer to Exhibit 11-1. The test statistic is

$$
\neq
$$

a. 44.08
b. 79.08
(c.) 81.67
d. 3.24

$$
\frac{60(2.1)^{2}}{(1.8)^{2}}=
$$

15. Refer to Exhibit 11-1. The p-value for this test is
a. 0.05
b. between 0.025 and .05

$$
2^{*}(.025-.05)
$$

c.) between .05 and .01
d. 1.96
16. Refer to Exhibit 11-1. At 95% confidence the null hypothesis
a. should be rejected
b. should not be rejected
c. should be revised
d. None of these alternatives is correct.

Exhibit 11-2
7
We are interested in determining whether or not the variances of the sales at two music stores (A and B) are equal. A sample of 26 days of sales at store A has a sample standard deviation of 30 while a sample of 16 days of sales from store B has a sample standard deviation of 20 .
17. Refer to Exhibit 11-2. The test statistic is
a. $\quad 1.50$
b. 0.67

(d. $\begin{aligned} & 1.56 \\ & 2.25\end{aligned}$
20

18. Refer to Exhibit 11-2. The p-value for this test is
(a.) between 0.05 and 0.10
b. between 0.10 and 0.2
c. between 0.2 and 0.3
d. None of these alternatives is correct.

19. Refer to Exhibit 11-2. At 95\% confidence the null hypothesis
a. should be rejected
b. should not be rejected
c. should be revised
d. None of these alternatives is correct.

Exhibit 11-4

$\mathrm{n}=81$

$$
\mathrm{s}^{2}=625
$$

$\mathrm{H}_{0}: \sigma^{2}=500$
$H_{a}: \underline{\underline{\sigma^{2}} \neq 500}$
20. Refer to Exhibit 11-4. The test statistic for this problem equals
a. 100
b. $\quad 101.88$
c. $\quad 101.25$
d. 64

21. Refer to Exhibit 11-4. The p-value is between
a. $\quad 0.025$ and 0.05
b. 0.05 and 0.1

c. 0.1 and 0.2
d. 0.2 and 0.3
22. Refer to Exhibit 11-4. At 95% confidence, the null hypothesis
(b. should be rejected
c. should be revised
d. None of these alternatives is correct.

16
We want to test the hypothesis that the population variances are equal. \neq
23. Refer to Exhibit 11-6. The test statistic for this problem equals
a. 0.417χ
b. $.843 \chi$
c. 2.4
d. 1.500

24. Refer to Exhibit 11-6. The p-value is between
a. 0.01 and 0.025
b. 0.02 and 0.05
c. 0.025 and 0.05

d. 0.00 and 0.01
25. Refer to Exhibit 11-6. At 95\% confidence, the null hypothesis
a. should be rejected
b. should not be rejected
c. should be revised
d. None of these alternatives is correct.

Exhibit 11-7

Sample A

s^{2}
n
12.1

11

Sample B
5
10

We want to test the hypothesis that population A has a larger variance than population B .
26. Refer to Exhibit 11-7. The test statistic for this problem equals
a. 0.4132
b. 1.96
(c) 2.42
d. 1.645

27. Refer to Exhibit 11-7. The p-value is between
a. 0.05 and 0.10
b. 0.025 and 0.05
c. 0.01 and 0.025
d. Less than 0.01

Exhibit 11-8
$\mathrm{n}=23 \quad \mathrm{~S}^{2}=60$
$\mathrm{H}_{0}: \sigma^{2} \leq 66$ $H_{a}: \sigma^{2}>66$
28. Refer to Exhibit 11-8. The test statistic has a value of
a. 20.91
b. 24.20
c. 24.00
(d.) 20.00

29. Refer to Exhibit 11-8. At 95% confidence, the critical value(s) from the table is(are)
a. 10.9823 and 36.7897
(b.) 33.924
c. 12.338
d. 33.924

30. Refer to Exhibit 11-8. The p-value is
a. less than 0.025
b. less than $0.05 x$
c. less than $0.10{ }^{\gamma}$
d. greater than 0.10
31. Refer to Exhibit 11-8. The null hypothesis
a. should be rejected X
(b) should not be rejected
c. should be revised
d. None of these alternatives is correct.

CHAPTER:128 Testing hypothesis \rightarrow population proportion (π).
\rightarrow We test if an action, policy, event, a Crisis had affected the population proportions.

99 :

* Did Covid-19 affect women participation in the labor market?
*Did the USD exchange rate affect the \% of US made cars in Kuwait.
\rightarrow So, we take a sample; van the test.
Weill have a null: no change the alternative: there is a change

All sizes of groups $=100 \%: 1$ at least two groups have changeel.

* 4-Steps

1. $\quad H_{0}: \pi_{1}=a, \pi_{2}=b, \pi_{3}=c, \ldots \pi_{K}=z$
in case they'vesume $n:\left(\pi_{1}=\pi_{2}=\pi_{3}=\ldots \pi_{k}=1 / k\right)$

$$
H_{1}: \pi_{1} \neq a, \pi_{2} \neq b, \pi_{3} \neq c, \ldots \pi_{k} \neq z
$$

in case they re same $n:\left(\pi_{1} \neq \pi_{2} \neq \pi_{3} \neq \ldots \neq \pi_{k} \neq 1 / k\right)$
2. Test statistics $L \rightarrow$ a group
χ^{2} stat $=\sum_{i=1}^{k} \frac{\left(f_{i}-e_{i}\right)^{2}}{e_{i}}: f_{i}: e_{i}:$ expenected frequency of group i
3. Critical Region (assumed as a vight-soled test)

4. Decision

* P. Value: just like before...
eg: Before the presidential debates it was expected that the $\%$ of voters in favor of candidates to be as follows

Candidates	$\%$
Demoractes	48%
Republicans	38%
Independent	4%
Undecided	10%

After the debates, a random sample of 1200 showed that 540 in favor of democratic candidate, 480 in favor of the republican candidate, 40 in favor of indlepenclent canclidate, ; 140 are unclecided.

At $\alpha=5 \%$, test if the proportions have changed.

1. $H_{0}: \pi_{1}=.48, \pi_{2}=.38, \pi_{3}=.04, \pi_{4}=.1$

$$
H_{1}: \pi_{1} \neq .48, \pi_{2} \neq .38, \Pi_{3} \neq .04, \Pi_{4} \neq 1
$$

2. test statistics: $\nabla^{\text {the }}$ sum of " 1 " goes 1 to K " 4 "

$$
\frac{C s: \quad}{x^{2} \text { stat }=} \sum_{i=1}^{4} \frac{\left(f_{i}-e_{i}\right)^{2}}{e_{i}}
$$

group	π	f	$e^{(1200 * \%): 1200 * 48}$	$F_{i-e_{i}}\left(f_{i}-e_{i}\right)^{2}$	$\frac{\left(f_{i}-e_{i}\right)^{2}}{e_{i}}$	
1	.48	540	576	-36	1296	$1296 / 576=2.25$
2	.38	480	456	24	576	$576 / 456=1.26$
3	.04	40	48	-8	64	1.33
4	.1	140	120	20	400	3.33

3. Critical region

meaning: there's evidence at 5\% level that the proportions have changed.
P-value: 8.17 is between $2.25 \%-5 \%$ on x^{2} table;
P-vake $\langle\alpha=5 \% \Rightarrow$ reject at 5%
eg: the $H R$ department reported 60 resignations during the last year, the following table groups the resignations according to the season in which it happened.

season	resignation
W	$10 \quad 1 / 4$
s	$221 / 4$
s	$191 / 4$
f	$91 / 4$

test if the number of resignations is uniform over the sections if $\alpha=.01$.

$$
\begin{aligned}
& H_{0}: \pi_{1}=\pi_{2}=\pi_{3}=\pi_{4}=1 / 4 \\
& H_{1}: \pi_{1} \neq \pi_{2} \neq \pi_{3} \neq \pi_{4} \neq 1 / 4 \\
& X^{2} \text { Stat }=\sum_{i=1}^{4} \frac{\left(f_{i}-e_{i}\right)^{2}=8.41}{e_{i}}=8 .
\end{aligned}
$$

group	π	π^{\prime}	e	$f_{i}-e_{i}$	$\left(f_{i-}-e_{i}\right)^{2}$	$\frac{\left(f_{i}-e_{i}\right)^{2}}{e_{i}}$
1	$1 / 4$	10	$60 * \frac{1}{4}=14$	-5	25	1.67
2	$1 / 4$	22	15	7	49	3.27
3	$1 / 4$	19	15	4	16	1.07
4	$1 / 4$	9	15	-6	36	2.4

Using the P-value:.
8.41 falls between $.025-.05$

P-value $<\alpha=5 \%$, reject at 5%
\rightarrow Accept the Ho.

Q9: before the rush began for Ramadan shopping, a department store had noted that the \% of customers paying with stave credit cards, \% of customers paying with a major credit Card, 3 customers paying in Cash eire the same... During the Ramadan rush a sample of 150 Shoppers 46 used store credit card, 43 major creelit card, 's 61 paid Cash... a $\alpha=5 \%$ test if methods of payments have Changed over the Ramadan rush.

$$
\begin{aligned}
& H_{0}: \pi_{1}=\pi_{2}=\pi_{3}=1 / 3 \\
& H_{1}: \pi_{1} \neq \pi_{2} \neq \pi_{3} \neq 1 / 3 \\
& X^{2} \text { stat }=\sum_{i=1}^{3} \frac{\left(f_{i}-e_{i}\right)^{2}}{e_{i}}=3.72
\end{aligned}
$$

group	π	f	$e^{150 * \%}$	$f_{i}-e_{i}$	$\left(f_{i}-e_{i}\right)^{2}$	$\frac{\left(f_{i}-e_{i}\right)^{2}}{e_{i}}$
1	$1 / 3$	46	50	-4	16	.32
2	$1 / 3$	43	50	-7	49	.98
3	$1 / 3$	61	50	11	121	$\underline{2.42}$
$=3.72$						

Using the P-value:
3.72 falls between 1 -. 9
P. value $>\alpha=10 \%$
\rightarrow reject at $\alpha=10 \%$

Gulf University for Science \& Technology
 Department of Economics \& Finance
 ECO-380: Business Statistics

Dr. Khalid Kisswani
Room: N1-116
Tel: 2530-7339
kisswani.k@gust.edu.kw

$\underline{\text { Assignment } 7 \text { (LO iv) }}$

1. The sampling distribution for a goodness of fit test (testing hypotheses about proportions) is the
a. Poisson distribution
b. t distribution
c. normal distribution
(d.) chi-square distribution
2. A goodness of fit test is always conducted as a
a. lower-tail test
b. upper-tail test
c. middle test
d. None of these alternatives is correct.

Exhibit 12-1

When individuals in a sample of 150 were asked whether or not they supported capital punishment, the following information was obtained.

Do you support
 Capital punishment?
 Yes
 No

No Opinion

We are interested in determining whether or not the opinions of the individuals (as to Yes, No, and No Opinion) are uniformly distributed.
3. Refer to Exhibit 12-1. The expected frequency for each group is
a. 0.333
b. 0.50

(d) 50
$\mid 50^{*} / 3$
4. Refer to Exhibit 12-1. The calculated value for the test statistic equals
a. 2
b. -2
c. 20
(d.) 4
5. Refer to Exhibit 12-1. The number of degrees of freedom associated with this problem is
a. 150
b. 149
(c) 2

$$
k-1 \Rightarrow 3-1
$$

d. 3
6. Refer to Exhibit 12-1. The p-value is
a. larger than 0.1
b. less than 0.1
c. less than 0.05
d. larger than 0.9
7. Refer to Exhibit 12-1. The conclusion of the test (at 95% confidence) is that the
(a.) distribution is uniform
b. distribution is not uniform
c. test is inconclusive
d. None of these alternatives is correct.

Exhibit 12-2

Last school year, the student body of a local university consisted of 30% freshmen, 24% sophomores, 26% juniors, and 20% seniors. A sample of 300 students taken from this year's student body showed the following number of students in each classification.

Freshmen	$83 f$
Sophomores	68
Juniors	85
Seniors	64

We are interested in determining whether or not there has been a significant change in the classifications between the last school year and this school year.
8. Refer to Exhibit 12-2. The expected number of freshmen is
a. 83
(b.) 90
c. 30
d. 10

2 Refer to Exhibit 12-2. The expected frequency of seniors is
a. 60
b. 20%
c. 68
d. 64
10. Refer to Exhibit 12-2. The calculated value for the test statistic equals
a. 0.5444
b. 300
(c.) 1.6615
d. 6.6615
11. Refer to Exhibit 12-2. The p-value is
a. less than .005
b. between .025 and 0.05
c. between .05 and 0.1
d. greater than 0.1
12. Refer to Exhibit 12-2. At 95\% confidence, the null hypothesis
a. should not be rejected
b. should be rejected
c. was designed wrong
d. None of these alternatives is correct.

Exhibit 12-4

In the past, 35% of the students at ABC University were in the Business College, 35% of the students were in the Liberal Arts College, and 30% of the students were in the Education College. To see whether or not the proportions have changed, a sample of 300 students was taken. Ninety of the sample students are in the Business College, 120 are in the Liberal Arts College, and 90 are in the Education College.
13. Refer to Exhibit 12-4. The expected frequency for the Business College is
a. 0.3
b. 0.35
(d. $\quad 90$
14. Refer to Exhibit 12-4. The calculated value for the test statistic equals
a. 0.01
b. 0.75
c. 4.29
d. 4.38
15. Refer to Exhibit 12-4. The hypothesis is to be tested at the 5% level of significance. The critical value from the table equals
a. 1.645
b. 1.96
c. 5.991
d. 7.815
16. Refer to Exhibit 12-4. The p-value is
a. greater than 0.1
b. between 0.05 and 0.1
c. between 0.025 and 0.05
d. between 0.01 and .025
17. Refer to Exhibit 12-4. The conclusion of the test is that the
a. proportions have changed significantly X
(b.) proportions have not changed significantly
c. test is inconclusive
d. None of these alternatives is correct.

Exhibit 12-8

The following shows the number of individuals in a sample of 300 who indicated they support the new tax proposal.

Political Party	Support
Democrats	100
Republicans	120
Independents	80

We are interested in determining whether or not the opinions of the individuals of the three groups are uniformly distributed.
18. Refer to Exhibit 12-8. The expected frequency for each group is
a. 0.333
b. 0.50
c. 50
(d.) None of these alternatives is correct. $\Rightarrow 100$
19. Refer to Exhibit 12-8. The calculated value for the test statistic equals
a. 300
b. 4
c. 0
(d.) 8
20. Refer to Exhibit 12-8. The number of degrees of freedom associated with this problem is
a. 2
b. 3
c. 300

$$
k-1 \Rightarrow 3-1
$$

d. 299

CHAPTER8 B: Analysis of variance (ANOVA)
Testing if 3 or more means are equal or no.
we have a null: All means are equal. But the alternative says not all the means are equal.
so, we take samples? we run the test.

* New conceits: conceptual view: assume we've testing 3 means.

sample 1 sample 2 sample $3 \rightarrow$ Total observations $n_{1}, \bar{x}_{1}, s_{1}^{2} \quad n_{2}, \bar{x}_{2}, s_{2}^{2} n_{3}, \bar{x}_{3}, s_{3}^{2} \quad n_{T}=n_{1}+n_{2}+n_{3}$
* In this Kind of analysis. they refer to the sample as treatment. Overall mean (grand mean) $\overline{\bar{x}}$

$$
\overline{\bar{x}}=\frac{\text { sum of all observations }}{\text { total number of obsentions }}=\frac{\sum X_{S}}{n_{T}}
$$

or: $\overline{\bar{x}}=\frac{\varepsilon \bar{x}}{K}$ if all samples of sure size

* Assume the following samples:

| Sample | \cap | \bar{x} | $\sum x=n \bar{x}$ Find $\overline{\bar{x}} ?$ using: $\overline{\bar{x}}=\frac{\sum x_{S}}{n_{T}}$ f | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | 10 | 5 | 50 | |
| B | 20 | 4 | 80 | $\Rightarrow \bar{x}=\frac{\sum x_{S}}{n_{T}}=\frac{280}{45}=6.22$ |
| C | 15 | 10 | 150 | |
| $=45$ | 19 | 280 | $\Rightarrow \frac{19}{3}=6.33$ the results are not the | |

same

* Assume the following samples:.
sample $n \bar{x}$
$A \quad 10 \quad 5 \Rightarrow$ Find $\overline{\bar{x}}$? because n s are the same,
$\begin{array}{lll}B & 10 & 4 \\ C & 10 & 10\end{array}$ use $\overline{\bar{x}}=\frac{\Sigma \bar{x}}{k}=\frac{\mu}{3}=6.33$
* Why there are differences between $\bar{X}_{s} \frac{1}{3} \overline{\bar{X}}_{s}$? two reasons
(1. Due to differences between the groups (treatments)
\rightarrow These differences can be measured by "Sum Suave Treatments"

$$
\text { STR }=\sum_{i=1}^{k} n_{i}\left(\bar{x}_{i}-\overline{\bar{x}}\right)^{2}
$$

(STR)
Then, we change SSTR into 'Mean Square Treatment" (MSTR)

$$
M S T R=\frac{S S T R}{K-1}
$$

(2. Due to differences within the groups (furor)

These differences can be measured by "Sum Square Error" SSE

$$
S S E=\sum_{i=1}^{k}\left(n_{i}-1\right) S_{i}^{2}
$$

Then, we convert the SSE into "Mean Square Error" MSE

$$
M S E=\frac{S S E}{n_{T}-K}
$$

How do we ran the test?
4. steps:.

1. Ho: $M_{1}=M_{2}=M_{3}=\ldots=M_{k}$

$$
H_{1}: M_{1} \neq M_{2} \neq m_{3} \neq \ldots \neq m_{k}
$$

2. Test statistics:-

$$
\begin{aligned}
& \text { Statistics:: } \\
& \begin{aligned}
\text { F stat }=\frac{\text { MSTR }}{\text { MS }} \Rightarrow \text { Kind of variance } \\
\Rightarrow \text { Kind of variance }
\end{aligned}
\end{aligned}
$$

Canfare two
variances to make a obecision
3. Critical Region "treat is as a right sided"

4. Decision
P. value: Just like before

The ANOVA table:

eg: test if the mean of all 4 cities is the same or no using the follouring $\alpha=5 \%$

sample	n	\bar{X}	5^{2}	$\sum x=n \bar{x}$
1	8	10.25	14.2	82
2	5	16.4	4.7	82
3	7	16	10.7	112
4	10	11.4	11.5	114
steps:	$=30$			

4. steps:.
5.

$$
\begin{aligned}
& H_{0}: M_{1}=M_{2}=M_{3}=M_{4} \\
& H_{1}: M_{1} \neq M_{2} \neq M_{3} \neq M_{4}
\end{aligned}
$$

2. F stact $=\frac{\text { MSTR }}{\text { MSE }}$

$$
\begin{aligned}
& \text { MSTR }=\frac{\text { SSTR }}{k-1} \Rightarrow \text { SSTR }=\sum_{i=1}^{4} n_{i}(\bar{x}-\overline{\bar{x}})^{2} \Rightarrow \overline{\bar{x}}=\frac{\sum_{x_{S}}}{n_{T}}=\frac{390}{30}=13 \\
& \text { SSTR - } 8\left(10.25-(3)^{2}+5(16.4-13)^{2}+7(16-13)^{2}+10(11.4-13)^{2}=206.9\right. \\
& \text { So, MSTR }=\frac{206.9}{4-1}=68.97 \rightarrow \text { First part } \\
& M S E=\frac{S S E}{n_{T}-K} \Rightarrow S S E=\sum_{i=1}^{4}\left(n_{i}-1\right) S_{i}^{2} \\
& =(8-1) 14 \cdot 2+(4) 4 \cdot 7+(6) 10 \cdot 7+(9) 11 \cdot 5=285.9 \\
& \therefore M S E=\frac{285.9}{(30-4)}=11 \rightarrow \text { secand pert } \\
& \rightarrow F_{\text {stat }}=\frac{\text { MSTR }}{\text { MSE }}=\frac{68.97}{11}=6.27
\end{aligned}
$$

3. Critical region

P-value:
Between . $1 \%-1 \%$ reject at 1%
ANOVA Ta ide:

Sources of N Vacation	of	SS	MS	F Stat
Treatment	3	206.9	68.97	6.27
Error	26	285.9	11	
Total	29	492.8		

eg: given the following f NOVA, answer the questions...

d. find missing values

$$
\begin{aligned}
& * F=\frac{M S T R}{M S E} \\
& 3 * \frac{M S \mathbb{R}}{6}
\end{aligned}
$$

b. Write Ho is,
c. Find P-value 3 write the decision. ${ }^{* * *} M S E=\frac{\text { SSE }}{d f} \Rightarrow 6=\frac{\text { SSE }}{40}=240$
b. Ho: $M_{1}=M_{2}=M_{3}, H_{1}: M_{1} \neq M_{2} \neq M_{3}$
c. P-value is between. $05 \dot{3} .1 \Rightarrow$ P. value $<\alpha=10 \%$; reject@ $\alpha=10 \%$
e. . Given the following ANOVA, answer the questions:

a. Find missing values

$$
F=\frac{M S T R}{M S E}=\frac{30}{6}=5
$$

b. Write $H_{0} \dot{\dot{j}} H_{1} \rightarrow H_{0}: M_{1}=M_{2}=M_{3}=M_{4} ; H_{1}: M_{1} \neq M_{2} \neq M_{3} \neq M_{4}$
c. Find p value ${ }_{3}$ session.
$G P$-value is between .oo $3.01 \Rightarrow$ P-value is less than I, reject (a) $\alpha=1 \%$

Gulf University for Science \& Technology
Department of Economics \& Finance
ECO-380: Business Statistics

Dr. Khalid Kisswani
Room: N1-116
Tel: 2530-7339
kisswani.k@gust.edu.kw

Assignment 8 (LO v)

1. In an analysis of variance problem involving 3 treatments and 10 observations per treatment, $\mathrm{SSE}=399.6$. The MSE for this situation is
a. 133.2

308
b. 13.32
(c.) 14.8
d. 30.0

2. When an analysis of variance is performed on samples drawn from K populations, the mean square between treatments (MSTR) is
a. $\quad \mathrm{SSTR} / \mathrm{n}_{\mathrm{T}}$
b. $\operatorname{SSTR} /\left(\mathrm{n}_{\mathrm{T}}-1\right)$

MSTR $=\frac{\text { SSTR }}{K-1}$
c. SSTR/K
(d.) $\operatorname{SSTR} /(\mathrm{K}-1)$
3. In an analysis of variance where the total sample size for the experiment is nT and the number of populations is K, the mean square within treatments is
(a.) $\operatorname{SSE} /\left(n_{T}-K\right)$
c. $\operatorname{SSE} /(\mathrm{K}-1)$
MSE $=\frac{S S E}{n_{T}-k}$
d. $\operatorname{SSE} / \mathrm{K} \times$
4. The F ratio in a completely randomized ANOVA is the ratio of
a. MSTR/MSE
b. MST/MSE
c. MSE/MSTR
d. MSE/MST

$$
\frac{\text { MSTR }}{\text { MSE }}
$$

5. The critical F value with 6 numerator and 60 denominator degrees of freedom at $\alpha=.05$ is
a. 3.74
b. 2.25
c. 2.37
d. 1.96
6. An ANOVA procedure is applied to data obtained from 6 samples where each sample contains 20 observations. The degrees of freedom for the critical value of F are
a. 6 numerator and 20 denominator degrees of freedom
b. 5 numerator and 20 denominator degrees of freedom

$$
\begin{aligned}
& d f_{1}=k-1=6-1=5 \\
& d f_{2}=n_{T}-k=120-6=114
\end{aligned}
$$

c. 5 numerator and 114 denominator degrees of freedom
7. In an analysis of variance problem if $\mathrm{SST}=120$ and $\mathrm{SSTR}=80$, then SSE is

a. 200	STR 80		
(b.	40	SSE	$?$
c.	80	SST	120

8. In a completely randomized design involving three treatments, the following information is provided:

The overall mean for all the treatments is $\overline{\bar{x}}=\frac{145}{20}$
a. $7.00=$
b. 6.67
c. 7.25
d. 4.89

Exhibit 13-1

STR $=6,750$
$\mathrm{H}_{0}: \mu_{1=} \mu_{2}=\mu_{3}=\mu_{4}$
$\mathrm{SSE}=8,000$
H_{a} : at least one mean is different
$\mathrm{n}_{\mathrm{T}}=20$ SST 14.75
9. Refer to Exhibit 13-1. The mean square between treatments(MSTR) equals
a. 400
b. 500
c. $1,687.5$
(d.) 2,250

$$
M S T R=\frac{S S T R}{k-1}=\frac{6,750}{3}
$$

10. Refer to Exhibit 13-1. The mean square within treatments (MSE) equals
a. 400
(b) 500
c. $1,687.5$
d. 2,250

MS $=\frac{\text { SSE }}{n_{T}-k}=\frac{8,000}{16}$
11. Refer to Exhibit 13-1. The test statistic to test the null hypothesis equals
a. 0.22
b. 0.84
(d. 4.22

$$
\frac{M S T R}{M S E}=\frac{2,250}{500}
$$

12. Refer to Exhibit 13-1. The null hypothesis is to be tested at the 5% level of significance. The p-value is
a. less than .01
b. between .01 and .025
c. between .025 and .05
d. between .05 and .10
13. Refer to Exhibit 13-1. The null hypothesis
(a) should be rejected
b. should not be rejected
c. was designed incorrectly
d. None of these alternatives is correct.

Exhibit 13-3

To test whether or not there is a difference between treatments A, B, and C , a sample of 12 observations has been randomly assigned to the 3 treatments. You are given the results below.
14. Refer to Exhibit 13-3. The null hypothesis for this ANOVA problem is
a. $\mu_{1}=\mu_{2}$
(b.) $\mu_{1}=\mu_{2}=\mu_{3}$
c. $\mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$

$$
s^{2}=\frac{\delta(x-\bar{x})^{2}}{n-1}
$$

d. $\mu_{1}=\mu_{2}=\ldots=\mu_{12}$
15. Refer to Exhibit 13-3. The mean square between treatments (MSTR) equals
a. 1.872
b. 5.86
c. 34
(d.) 36

$$
\text { MSTR }=\frac{S S T R}{k-1} \Rightarrow \frac{72}{2}=
$$

16. Refer to Exhibit 13-3. The mean square within treatments (MSE) equals
a. 1.872
$\begin{array}{ll}\text { b. } & 5.86 \\ \text { c. } & 34 \\ \text { d. } & 36\end{array}$
17. Refer to Exhibit 13-3. The test statistic to test the null hypothesis equals
$\begin{array}{ll}\text { a. } & 0.944 \\ \text { b. } & 1.059 \\ \text { c. } & 3.13 \\ \text { d. } & 19.231\end{array}$
18. Refer to Exhibit 13-3. The null hypothesis is to be tested at the 1% level of significance. The p-value is
a. greater than 0.1
b. between 0.1 to 0.05
c. between 0.05 to 0.025
d. between 0.025 to 0.01
19. Refer to Exhibit 13-3. The null hypothesis
a. should be rejected
b. should not be rejected
c. should be revised
d. None of these alternatives is correct.

Exhibit 13-4

In a completely randomized experimental design involving five treatments, 13 observations were recorded for each of the five treatments (a total of 65 observations). The following information is provided.

STR $=200$ (Sum Square Between Treatments)
SST $=800$ (Total Sum Square)

$$
n_{T}=5^{*} 13=65
$$

20. Refer to Exhibit 13-4. The sum of squares within treatments (SSE) is

d. 1,600
21. Refer to Exhibit 13-4. The number of degrees of freedom corresponding to between treatments is
a. 60
b. 59
c. $\begin{array}{r}5 \\ \text { (d. } 4\end{array}$

22. Refer to Exhibit 13-4. The number of degrees of freedom corresponding to within treatments is
a. 60
b. 59
c. 5
d. 4
$n_{T}-K$
23. Refer to Exhibit 13-4. The mean square between treatments (MSTR) is
a. 3.34
b. $\quad 10.00$
c. 50.00
$M S T R=\frac{S T R}{k-1}=\frac{20}{5-1}$
d. 12.00
24. Refer to Exhibit 13-4. The mean square within treatments (MSE) is
a. 50
(b.) 10
c. 200
d. 600

25. Refer to Exhibit 13-4. The test statistic is
a. 0.2
(b.) 5.0
c. $\quad 3.75$
d. 15

$$
F . \text { step }=\frac{\text { MSTR }}{\text { MSE }}=\frac{50}{10}=5
$$

26. Refer to Exhibit 13-4. If at 95% confidence we want to determine whether or not the means of the five populations are equal, the p-value is
a. between 0.05 to 0.10
b. between 0.025 to 0.05
c. between 0.01 to 0.025
d. less than 0.01

Exhibit 13-5

Part of an ANOVA table is shown below.

Source of Variation	Sum of Squares	$\begin{aligned} & \text { Degrees of } 4 \\ & \text { Freedom } \gg 1 \end{aligned}$	Mean Square	F
Between Treatment	180	$3 \mathrm{la} k$	60	
Within Treatment (Error)	300		20	3
TOTAL	480	18	*	

27. Refer to Exhibit 13-5. The mean square between treatments (MSTR) is
a. 20
(b) 60
c. 300
$M S T R=\frac{S S T R}{K-1}=\frac{180}{3}$
d. 15
28. Refer to Exhibit 13-5. The mean square within treatments (MSE) is
a. 60
b. 15
c. 300
(d.) 20

$$
\text { MSE }=\frac{S S E}{n_{T-K}}=\frac{300}{15}
$$

29. Refer to Exhibit 13-5. The test statistic is
a. 2.25
b. 6
c. 2.67
(d.) 3

30. Refer to Exhibit 13-5. If at 95% confidence, we want to determine whether or not the means of the populations are equal, the p-value is
a. between 0.01 to 0.025
b. between 0.025 to 0.05
(c.) between 0.05 to 0.1
d. greater than 0.1

Exhibit 13-6
Part of an ANOVA table is shown below.

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F
Between Treatments	64	4	16	8
Within Treatments	36	18	2	
Error	100	22		

$$
\begin{aligned}
& 16 \\
& M S T R=\frac{S S \mathbb{R}}{K-1} \\
& M S E=\frac{S S E^{36}}{n_{T}-K} \\
& F=\frac{M S T R}{M S E}
\end{aligned}
$$

31. Refer to Exhibit 13-6. The number of degrees of freedom corresponding to between treatments is $8=\frac{16}{2}$
a. 18
b. 2
(c. 4
d. 3
$64 / 16$

K_I
32. Refer to Exhibit 13-6. The number of degrees of freedom corresponding to within treatments is
a. 22
b. 4
c. 5
$n_{T}-K$
(d.) 18

3612

33. Refer to Exhibit 13-6. The mean square between treatments (MSTR) is
a. 36
(b.) 16
c. 64
d. 15

$$
M S T R=\frac{64}{4}=
$$

34. Refer to Exhibit 13-6. If at 95% confidence we want to determine whether or not the means of the populations are equal, the p-value is
a. greater than 0.1
b. between 0.05 to 0.1
c. between 0.025 to 0.05
d. less than 0.01
35. Refer to Exhibit 13-6. The conclusion of the test is that the means
a. are equal accept
b. may be equal
(c.) are not equal strong exicbance
d. None of these alternatives is correct. x

CHAPTER: $148 \frac{\text { Simple linear regression }}{\boxed{K}}$
Estimating relationship between a dependent variable (y); an inclependent variable (x)
y depends on x

$$
\Leftrightarrow y=f(x)
$$

Bo: Intercept (constant): y value when $x=0$ $\rightarrow \overline{\text { connection point between the line } 3, y \text {. }}$
$\beta_{1}: \frac{\Delta y}{\Delta x} \rightarrow$ slope : moving the some direction.
if $\beta_{1}>0 \rightarrow x \dot{\text { y }}>0$ Positively related same direction $\beta_{1}<0 \rightarrow x$ is Negatively related opposite
eg: $\quad \beta_{1}=-3$: $x 3_{y}$ will move to the opposite direction. G This says: if $X 4$ by' 9 unit, then $y \nleftarrow$ by 3

$$
y=B O+B_{1} x \rightarrow \text { "Mathematics" }
$$

in Statistics:

$$
\begin{aligned}
& \text { istics:: } \\
& y=\beta_{0}+\beta_{1} x+\varepsilon \rightarrow \text { "error tee" } \rightarrow \begin{array}{l}
\text { Captures the effect of } \\
\text { unobserved variables" }
\end{array} \\
& \text { Epplamed Unexplained } \\
& \begin{array}{l}
\text { E(ylx) } \\
\text { epectedyygiven } \\
\text { the } x
\end{array}
\end{aligned}
$$

$E(Y \mid X)=B_{0}+B_{1} x \Rightarrow$ Regression is about finding values \rightarrow population level for $\beta_{0} \div \beta_{1}$

Because it is population, finding true Bo $\dot{\beta} B_{1}$ is hard
So, we take a sample (x, y) i estimate a similar relationship $\hat{y}=b_{0}+b_{1} x \rightarrow$ So, we need to estimate bo s. $_{1} b_{1}$

Assume we took a sample (x; y) ? we plotted the points

the difference between actual y; expect $\hat{y} \rightarrow$ residual (e) $e=y-\hat{y}$

$$
\text { * } \varepsilon e=0=\text { sumall residuals }=\text { zero }
$$

How can we choose the best line (best bo ? b_{1})?
\rightarrow we use "Ordiroum Least squares: OLS"
ILS:
the best line is the one that minimizes εe^{2}

$$
b_{1}=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}, \quad b_{0}=\bar{y}-b_{1} \bar{x}
$$

eg:

$$
\begin{array}{lll}
\bar{X}=\frac{10}{5}=2, \bar{Y}=\frac{100}{5}=20 & \overline{\sum=20} \quad \overline{\varepsilon=4} & \varepsilon e^{\frac{1}{2}=14} \overline{\varepsilon=114} \\
\text { best sloe } & \text { S } & \text { SE SST }
\end{array}
$$

$$
b_{1}=\frac{\varepsilon(x-\bar{x})(y-\bar{y})}{\varepsilon(x-\bar{x})^{2}}=\frac{20}{4}=55 b_{0}=\bar{y}-b_{1} \bar{x}=20-5(2)=10
$$

$\therefore \hat{y}=10+5 x \rightarrow$ The best fit the A AA \rightarrow (the best line)

* coefficient of determination $\left(R^{2}\right)$
\rightarrow we use it to check if the model is good or no.
R^{2} : Shows now much (X) explains of the variations of (y) \qquad total variation of $y \rightarrow$ measured by SS TM $^{\text {Sum }}=\{(Y$ sucre total ${ }^{E}$ (regression) sum saxares regression error

$$
\begin{gathered}
\therefore S S T=S S R+S S E \\
R^{2}=\frac{S S R}{S S T}=1-\frac{\text { SSE }}{\text { SST }} \quad a \leqslant R^{2} \leqslant 1 \Rightarrow R^{2} \geqslant .5 \rightarrow \text { model is good }
\end{gathered}
$$

* for pervious example, find R^{2}

$$
\begin{aligned}
& S S E=14 \\
& S S T=114 \\
& R^{2}=\frac{S S R}{S S T}=1-\frac{S S E}{S S T}=1-\frac{14}{114}=.88 \rightarrow 88 \%
\end{aligned}
$$

$\rightarrow(x)$ explains 88% of the total variations of y.

* Coefficiant of Correlation (r)
previcusly: $r=\frac{\operatorname{Cov}_{x, y}}{S_{x} S_{y}} \rightarrow-1 \leqslant r \leqslant+1$
Now: $\quad r=\binom{$ sign }{$c f b_{1}} \sqrt{R^{2}}$
el: assume $\hat{y}=20-1 / 2 x, R^{2}-81 \rightarrow r=$?

$$
r=-\sqrt{R^{2}}=-\sqrt{.81}=-.9
$$

eg: assume the following sample:
$\hat{y}=11-x \quad$ they have to cold ap to ZERO

x	y	$x-\bar{x})$	$(1-\bar{y})$	$(x-\bar{x})(y-\bar{y})$	$(x-\bar{x})^{2} \mid(x-\bar{y})^{2}$	\hat{y}	$e=y-\bar{y}$	e^{2}
4	12	0	5	0	0	25	7	5
25								
6	3	2	-4	-8	4	16	5	-2
2								
2	7	-2	0	0	4	0	9	-2
4	6	0	-1	0	0	1	7	-1

a. Find the least square line $\begin{array}{llll}\varepsilon=-8 & \varepsilon=8 & \varepsilon=42 \\ s s t i & =0 & =34 \\ \text { set }\end{array}$
b. Find: $R^{2} \dot{\dot{g}} r \quad c$ test if the ape is synificant $(\alpha=5 / 0)$
a. $\hat{y}=b_{0}+b_{1} x$

$$
\begin{aligned}
& b_{1}=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x}) 2}: \bar{x}=\frac{16}{4}=4 ; \bar{y}=\frac{28}{4}=7 \\
& b_{1}=\frac{-8}{8}=-1 \rightarrow \text { if } x \text { goes } 4 \text { by } 1 \text { unit then y goes }+ \text { by } 1 \text { unit } \\
& b_{0}=\bar{y}-b_{1} \bar{x}=7-(-1) 4=7+4=11
\end{aligned}
$$

$\rightarrow \hat{y}=11-x$ our equation (the best line for the DATA we have)
b. R^{2} ir (good model orro (good independent)

$$
\begin{aligned}
& R^{2}=\frac{S S R}{S S T} \text { or }=1-\frac{S S E}{S S T}: \\
& S S R=\varepsilon(\hat{y}-\bar{y})^{2} \\
& \rightarrow S S E=\varepsilon(y-\bar{y})^{2}=\varepsilon e^{2} \\
& \Rightarrow S S T=\varepsilon(y-\bar{y})^{2}=S S R+S S E
\end{aligned}
$$

$R^{2}=\frac{8}{42}=19: 19 \% \rightarrow x$ explains 19% of the total variation of $y:$ not good an the rest 81% is explained by the error (untrue variable)
\rightarrow we pick a weak variable

$$
\rightarrow r=\left(\operatorname{sigh}_{\mathrm{sfb}}\right) \sqrt{R^{2}}=-\sqrt{.19}=-.44 \rightarrow \text { weak correlation }
$$

C. test if β_{1} significant or no:.
4. steps:
$H_{0}: B_{1}=0 \rightarrow$ not significant (x doesint affect y)
$H_{1}: \beta_{1} \neq 0$
2. test stat: t. stat $=\frac{b_{1}}{\text { se(b) }} \rightarrow$ st error of b_{1}

$$
\begin{aligned}
& \quad \operatorname{se}\left(b_{1}\right)=\sqrt{\frac{M S E}{\sum(x-\bar{x})^{2}}}=\sqrt{\frac{\left(\frac{\sum e^{2}}{n-2}\right)}{\sum(x-\bar{x})^{2}}} 2 \text { cur eatinatiog }=\text { things } \\
& \\
& \text { Se b } b_{1}=\sqrt{\frac{\frac{32}{2}}{8}}=1.46 \\
& \therefore \text { t. Stat }=\frac{-1}{1.46}=-.69
\end{aligned}
$$

3. Critical region

\therefore accept the Ho at $\alpha=5 \%$: there's no evclance (4.3)
that β_{1} is sigififiant.

P_value:

$$
\rightarrow \text { Between }(25-.4) \rightarrow 50 \%-80 \% \neq \text { Greater than }
$$ 10% accept

CHAPTER: 15 : multiple linear Regression

$$
\begin{aligned}
& y=f\left(x_{1}, x_{2}, x_{3}, \ldots x_{p}\right) \\
& E(y \mid x)+\text { expected } y \text { given } x_{3} \text { (eppained) } \quad \text { uneplained } \\
y= & B_{0}+B_{1} x_{1}+B_{2 x_{2}}+B_{5} x_{3}+\ldots \ldots \beta_{p} x_{p}+\varepsilon \rightarrow \text { error }
\end{aligned}
$$

G many independent variables s? everyone has its slope.

* of $x_{s}: p$
* of $\beta: P+1 \rightarrow K$ "how many Betas"

$$
E(y \mid x)=\beta_{0}+\beta_{1 x_{1}}+\beta_{2 x_{2}}+\beta_{3 x_{3}}+\ldots+\beta_{p x_{p}}
$$

β_{0} : intercept \rightarrow y value when all $x_{s}=0$
\rightarrow where the line gonna cross the" y " access
$\left.\beta_{1}=\frac{\Delta y}{\Delta x_{1}} \right\rvert\,$ other variables are crestant
$\left.\beta_{2}=\frac{\Delta y}{\Delta x_{2}} \right\rvert\,$ other varicibles are constant.
Finding: $\beta_{1}, \beta_{2}, \beta_{3}, \ldots . \beta_{p}$ is hard \rightarrow Popuction
G So, we take a sample 3 estimate.

$$
\hat{y}=b_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}+\ldots . b_{p x p}
$$

we use "Ils" to get the best line ('minimize ser')
Now: the estimated outcomes of regression will be given
eg:

variable coefferient st ensor		
intercept	2.5	.95
x_{1}	1.8	1.03
x_{2}	-3.6	5.88
x_{3}	4.1	.2

Also, ANOUA table will be given (missing vales)

Sources of				of
SS	MS	FEtal		
Regriviation	K-1 (p)	SSR	MSR	$\frac{\text { MS }}{}$
Error	$n-k$	SSE	ME	
Total	$n-1$	SST		

$$
\begin{aligned}
& S S R=\varepsilon(\hat{y}-\bar{y})^{2}, S S E=\varepsilon(y-\hat{y})^{2}=\varepsilon e^{2} \\
& \therefore S S T=S S R+S S E=\varepsilon(y-\bar{y})^{2}
\end{aligned}
$$

\rightarrow What's needed from a student?

1. write the mocked
2. Find R^{2}
3. Create a cenficlence interval for any β
4. Testing hypotheses
5. Writing the model:

6. Finding $R^{2} \rightarrow$ it shows how much x_{s} are eppaning total variation of y

$$
R^{2}=\frac{S S R}{S S T}=1-\frac{S S E}{S S T}
$$

3. Creating a confidence interval for any " B " question will specify

$$
\beta_{i}=b_{i} \pm t_{\frac{\alpha}{2} \alpha f} \operatorname{se}\left(b_{i}\right)
$$

eg: $\beta_{7}=b_{7} \pm t_{\frac{a}{2}, i_{f}} \operatorname{se}\left(b_{7}^{2}\right): d f=n-k$
4. Testing hypotheses:

1. Individual significance test
2. Overall significance test
3. Individual significance test tests if a certain B is Significant

4-Steps: 1. $\mathrm{HO}_{\mathrm{L}}: \beta_{i}=0 \rightarrow$ meaning that \mathcal{B}_{L} is nat sgnificant.

$$
H_{1}: \quad \beta_{i} \neq 0
$$

2. Test stat.

$$
t-\text { stat }=\frac{b_{i}}{\sec \left(b_{i}\right)}
$$

3. Critical region

* P. value

make sure to multiply by "?" sine is a

4. Decision two-sided test
5. overall significance test tests if al Bs are significant \rightarrow if ALL slopes are zero
4-steps: 1. Ho: $\beta_{1}=\beta_{2}=B_{3}=\cdots=\beta_{p}=0$
$H_{1}: \beta_{1} \neq B_{2} \neq B_{3} \neq \cdots \neq B_{i} \neq 0$ at least 1 is not zero "at least one of the ${ }^{\prime}$ affects y "
6. Test stat:.

$$
\text { F. stat }=\frac{\text { MSR }}{\text { MSE }}
$$

3. Critical region:. treated "as a right-sided..."

4. Decision

$$
\text { * P. value } * \text { no *by } \underline{=}
$$

eg: assume estimating the effect of x_{1}, x_{2}, x_{3} on y using a sample of 10 obsencations. The following result coming from the estimation. variable coefficient st.error ANCUA:

1. Write the estimated regression line
2. Find $R^{2} 3$. Est if the coefficient of x_{2} is significant $(\alpha=5 \%)$ 4. Test if the overall significance of the model $(\alpha=5 \%)$

$$
\text { 1. } \hat{y}=b_{0}+b_{1} x_{1}+b_{22} x_{2}+b_{3 x_{3}} \rightarrow \hat{y}=4.09+10.02 x_{1}+10 x_{2}-4.48 x_{3}
$$

2. $R^{2}=\frac{\text { SSR }}{\text { SST }}=1-\frac{\text { SSE }}{\text { SST }}=\frac{360}{384}=93.8 \%$: meaning that the X_{S} explain 93.8% of y total variation.
3. $H_{0}: B_{2}=0, H_{1}: B_{2} \neq 0$
stat $=\frac{b_{2}}{\operatorname{seD} D_{2}}=\frac{.1}{.12}=.83$

4. $H 0: \beta_{1}=\beta_{2}=\beta_{3}=0 \quad, H_{1}: \beta_{1} \neq \beta_{2} \neq \beta_{3} \neq 0$
F. stat $=\frac{M S R}{M S E}=\frac{120}{4}=30$

\Rightarrow Reject the Ho: There's evidance that at least one of the 1 has an effect over y.

Gulf University for Science \& Technology
 Department of Economics \& Finance
 ECO-380: Business Statistics

Dr. Khalid Kisswani
Room: N1-116
Tel: 2530-7339
kisswani.k@gust.edu.kw

Assignment 9 (LO vi)

1. In the following estimated regression equation $\tilde{\mathrm{y}}=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{x}$
a. b_{1} is the slope
b. b_{1} is the intercept x
c. b_{0} is the slope x
d. None of these alternatives is correct.
2. A regression analysis between sales (Y in $\$$) and price (X in $\$$) resulted in the following equation:
$\hat{\mathrm{Y}}=30-4 \mathrm{X}$. The equation implies that an
a. increase of $\$ 1$ in price is associated with an increase of $\$ 4$ in sales σ
b. increase of $\$ 4$ in price is associated with an increase of $\$ 1$ in sales
c. decrease of $\$ 1$ in price is associated with an decrease of $\$ 4$ in sales
d. decrease of $\$ 1$ in price is associated with an increase of $\$ 4$ in sales
3. In a regression and correlation analysis if $\mathrm{r}^{2}=1$, then
a. $\mathrm{SSE}=\mathrm{SST}$
b. $\mathrm{SSE}=1$
c. $\mathrm{SSR}=\mathrm{SSE}$
d. $\mathrm{SSR}=\mathrm{SST}$
4. In a regression analysis, the regression equation is given by $y=12-6 x$. If $\mathrm{SSE}=510$ and $\mathrm{SST}=1000$, then the coefficient of correlation is r
a. -0.7
c. $\quad 0.49$
d. -0.49

$$
R^{2}=\frac{510}{1000}=.51
$$

$\therefore r=-\sqrt{.51}$
5. In a regression analysis if $\underline{S S E}=\frac{200}{L}$ and $S S R=\frac{300}{\sim}$, then the coefficient of determination is $R^{2}=\frac{300}{500}$
a. 0.6667
(b.) 0.6000

$$
S S T=500
$$

c. $\quad 0.4000$
d. $\quad 1.5000$
6. If the coefficient of determination is equal to 1 , then the coefficient of correlation
a. must also be equal to 1
(b.) can be either -1 or +1
c. can be any value between -1 to +1
d. must be -1
7. Regression analysis was applied between demand for a product (Y) and the price of the product (X), and the following estimated regression equation was obtained: $\hat{Y}=120-10 \mathrm{X}$
Based on the above estimated regression equation, if price is inereased by 2 units, then demand is expected to
a. increase by 120 units
b. increase by 100 units
c. increase by 20 units
$-10(2)=-20$
(d.) decease by 20 units
8. If the coefficient of correlation is 0.8 , the percentage of variation in the dependent variable explained by the variation in the independent variable is
a. 0.80%
(b.) 80%
x
c. 0.64%
d. 64%
9. In a regression analysis if $\underline{S S T}=500$ and $\underline{S S E}=\underline{30}$, then the coefficient of determination is
a. 0.20
b. 1.67
c. 0.60
$R^{2}=1-\frac{3}{5}$
(d.) 0.40

Exhibit 14-1

The following information regarding a dependent variable (Y) and an independent variable (X) is provided.

10. Refer to Exhibit 14-1. The least squares estimate of the slope is

0
(a) 1
b. 2
c. 3
d. 4

$$
b_{1}=\frac{\varepsilon(x-\bar{x})(y-\bar{y})}{\varepsilon(x-\bar{x})^{2}}=\frac{10}{10}
$$

11. Refer to Exhibit 14-1. The least squares estimate of the Y intercept is
a. 1
(b) 2
c. 3

$$
b_{0}=\bar{y}-b_{1} \bar{x}=5-1(3)=2
$$

d. 4
12. Refer to Exhibit 14-1. The coefficient of determination is
a. 0.7096
b. -0.7906

$$
R^{2}=1-\frac{6}{16}=
$$

d. 0.375
13. Refer to Exhibit 14-1. The coefficient of correlation is
a. 0.7906
b.) -0.7906
c. 0.625
d. 0.375

$$
r=-\sqrt{.65}
$$

14. Refer to Exhibit 14-1. The MSE is
a. 1
b. 2
c. 3
d. 4

$$
M S E=\frac{S E}{n_{T}-k}=\prod_{\substack{\hat{y}=6}}^{40}
$$

Exhibit 14-2
$\begin{array}{lllllll}\text { You are given the following information about } y \text { and } x . & \boldsymbol{y} & 1 & 4 & 3 & 2 & 1\end{array}$

\mathbf{y}	5	-1	3	2	1	$\bar{y}=3$
\mathbf{x}	1	2	3	4	5	$\bar{x}=3$
$(x-\bar{x})$	-2	-1	0	1	2	
$(x-\bar{y})$	2	1	0	-1	-2	
$(x-\bar{x})(y-\bar{y})$	-4	-1	0	-1	-4	$=-10$
$(x-\bar{x})^{2}$	4	1	0	-1	4	$=10$

15. Refer to Exhibit 14-2. The least squares estimate of b_{1} (slope) equals
a. 1
(b.) -1

d. 5
16. Refer to Exhibit 14-2. The least squares estimate of b_{0} (intercept)equals
a. 1
b. -1
c. 6 $3+1(3)$
d. 5
17. Refer to Exhibit 14-2. The point estimate of y when $\mathrm{x}=\underline{10}$ is
a. -10
b. 10
(c. -4 ?
d. 4
18. Refer to Exhibit 14-2. The sample correlation coefficient equals
a. 0
b. +1
c. -1
d. -0.5
19. Refer to Exhibit 14-2. The coefficient of determination equals
a. 0
b. -1
c. +1
d. -0.5

Exhibit 14-4

Regression analysis was applied between sales data (Y in $\$ 1,000 \mathrm{~s}$) and advertising data (x in $\$ 100 \mathrm{~s}$) and the following information was obtained: $\hat{Y}=12+1.8 \mathrm{x} . \mathrm{n}=17, \mathrm{SSR}=225, \mathrm{SSE}=75, \mathrm{~S}_{\mathrm{b} 1}=0.2683$
20. Refer to Exhibit 14-4. Based on the above estimated regression equation, if advertising is $\$ 3,000$, then the point estimate for sales (in dollars) is
a. $\$ 66,000$
b. $\$ 5,412$
c. $\$ 66$
d. $\$ 17,400$

$$
\begin{aligned}
12 & +1.8(3,000) \\
& =5,412
\end{aligned}
$$

21. Refer to Exhibit 14-4. The F statistic computed from the above data is
a. 3
b. 45
c. 48
d. 50
22. Refer to Exhibit 14-4. The t statistic for testing the significance of the slope is
a. $\quad 1.80$
b. 1.96
c. 6.708
d. 0.555
23. Refer to Exhibit 14-4. The critical t value for testing the significance of the slope at 95% confidence is
a. 1.753
b. 2.131
c. 1.746
d. 2.120
24. A multiple regression model has
a. only one independent variable
b. more than one dependent variable
c. more than one independent variable
d. at least 2 dependent variables

Exhibit 15-1

In a regression model involving 44 observations, the following estimated regression equation was obtained.
$\hat{Y}=29+18 \mathrm{X}_{1}+43 \mathrm{X}_{2}+87 \mathrm{X}_{3}$. For this model $\mathrm{SSR}=600$ and $\mathrm{SSE}=400$.
25. Refer to Exhibit 15-1. The coefficient of determination for the above model is
a. 0.667
b. 0.600
c. 0.336
d. 0.400
26. Refer to Exhibit 15-1. MSR for this model is
a. 200
b. 10
c. 1,000
d. 43
27. Refer to Exhibit 15-1. The computed F statistics for testing the significance of the above model is
a. $\quad 1.500$
b. 20.00
c. 0.600
d. 0.6667

Exhibit 15-6

Below you are given a partial computer output based on a sample of 16 observations.

	Coefficient	Standard Error
Constant	12.924	4.425
X_{1}	-3.682	2.630
X_{2}	45.216	12.560

Analysis of Variance
Source of
Variation
Regression
Error

Mean Square $2,426.5$	F
485.3	5

28. Refer to Exhibit 15-6. The estimated regression equation is
a. $\mathrm{Y}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon$
b. $\mathrm{E}(\mathrm{Y})=\beta_{0}+\beta_{1} \mathrm{X}_{1}+\beta_{2} \mathrm{X}_{2}$

$$
485 \cdot 3=\frac{5 S E}{r-k}
$$

c. $\hat{Y}=12.924-3.682 \mathrm{X}_{1}+45.216 \mathrm{X}_{2}$

16-3
d. $\hat{Y}=4.425+2.63 \mathrm{X}_{1}+12.56 \mathrm{X}_{2}$
29. Refer to Exhibit 15-6. The interpretation of the coefficient of X_{1} is that
a. a one unit change in X_{1} will lead to a 3.682 unit decrease in $\mathrm{Y} \checkmark$
b. a one unit increase in X_{1} will lead to a 3.682 unit decrease in Y when all other variables are held constant
c. a one unit increase in X_{1} will lead to a 3.682 unit decrease in X_{2} when all other variables are held constant
d. It is impossible to interpret the coefficient.
30. Refer to Exhibit 15-6. We want to test whether the parameter β_{1} is significant. The test statistic equals
(a.) -1.4
b. 1.4
c. 3.6
d. 5

31. Refer to Exhibit 15-6. The t value obtained from the table which is used to test an individual parameter at the 1% level is
a. 2.65
b. 2.921
c. 2.977
d. 3.012
32. Refer to Exhibit 15-6. Carry out the test of significance for the parameter β_{1} at the 1% level. The null hypothesis should be
a. rejected
b. not rejected
c. revised
d. None of these alternatives is correct.
33. Refer to Exhibit 15-6. The degrees of freedom for the sum of squares explained by the regression (SSR) are a.) 2
b. 3
c. 13
d. 15
34. Refer to Exhibit 15-6. The sum of squares due to error (SSE) equals
a. $\quad 37.33$
b. 485.3
c. 4,853
(d.) $6,308.9$
35. Refer to Exhibit 15-6. The test statistic used to determine if there is a relationship among the variables equals
a. -1.4
b. 0.2
c. 0.77
d. 5
36. Refer to Exhibit 15-6. The F value obtained from the table used to test if there is a relationship among the variables at the 5% level equals
a. $\quad 5.10$
b. 3.89
c. 3.74
d. 4.86
37. Refer to Exhibit 15-6. Carry out the test to determine if there is a relationship among the variables at the 5% level. The null hypothesis should
a. be rejected
b. not be rejected
c. revised
d. None of these alternatives is correct.

