394
Modern Database Management, Eleventh Edition

Chapter 8
393

Chapter 8 Database Application Development

Chapter Overview
This chapter describes the fundamentals of the client/server approach to computing resources, and discusses the role of databases in this approach. This chapter provides foundational knowledge for understanding newer approaches to distributed computing (web applications covered in this chapter and distributed databases in Chapter 12). This chapter emphasizes the impact of client/server systems and how to best take advantage of the resources and choices available. Coverage of two-tier and three-tier architecture is provided along with specific examples of VB.NET and Java code for database connections. The chapter also explores web applications and Extensible Markup Language (XML).

Chapter Objectives

Specific student learning objectives are included at the beginning of the chapter. From an instructor’s point of view, the objectives of this chapter are to:

1. Impart to the student a comprehensive view of the possibilities of client/server computing and the advantages and disadvantages of different architectural structures.

2. Provide a framework for discussion of tiered architectures and the vocabulary that goes along with it.

3. Illustrate the uses of application partitioning across the different segments of the network and the client/server system; form a basis for understanding the decision-making process in implementing various configurations.

4. Provide the student with the conceptual underpinnings of connections to remote databases.

5. Emphasize the importance of new and emerging technologies that will carry businesses forward in a constantly evolving environment.

6. Establish the concepts of how clients pull up remote applications and data so that as the technology grows the student can make the transition from one means to another.
Key Terms

	Application partitioning
	Open Database Connectivity (ODBC)
	Web Services Description Language (WSDL)

	Application program interface (API)
	Thin Client
	World Wide Web Consortium (W3C)

	Client/server system
	Three-tier architecture
	XHTML

	Database server
	Service-oriented architecture (SOA)
	XML Schema Definition

	Extensible Markup Language (XML)
	Simple Object Access Protocol (SOAP)
	XPath

	Fat client
	Universal Description, Discovery, Integration (UDDI)
	XQuery

	Java servlet
	Web services
	Extensible Stylesheet Language Transformation (XSLT)

	Middleware
	
	

Classroom Ideas

1. Create a network structure of servers and clients. Give students a simulated design of a business with a file server architecture and estimated number of transactions each day. Have the students map out the traffic between pieces of the system and observe the system load in a normal business day. Ask the students to reassess their observations if the business has a 10 percent growth factor. Now have them follow through the same transactions on a client/server system: first a two-tier and then a three-tier. Observe again with the 10 percent growth factor. Ask for their observations for each of the three architectures. Make sure that they try different application partitioning for the two- and three-tiered operations. Request a recommendation for the most advantageous approach to use. Students should defend their answers.

2. Use sections of Figure 4, and Figure 5, as examples of the basic process needed for program code access of databases. Organize students into small groups and assign Problem and Exercises 6 and 7 to different small groups; compare group solutions in large classroom discussion.

3. Organize the students into small groups and assign Problem and Exercise 5. Have each group report back to the class as a whole. Compare/Contrast the small group findings with one another in discussion with the whole class.

4. Have the students use a simple database application that has not yet been converted to run on the Internet. Divide the students into groups and have each group Web-enable the application in a different way or language. Have each group make a presentation to the class on how they accomplished their goal. Have each group turn in a hard copy of their code. Make these into a handout to distribute to the class in the next meeting.

5. Organize students into small groups and have each group research the use of XML in financial reporting requirements (e.g., XBRL). Ask each group to report their findings back to the class as a whole.

Answers to Review Questions

1. Define each of the following key terms:

a. Application partitioning. Assigning portions of application code to client or server partitions in order to achieve better performance and interoperability

b. Application program interface (API). Type of software that allows a specific front-end program development platform to communicate with a particular back-end database server, even when the front end and back end were not built to be compatible

c. Client/server system. A common solution for hardware and software organization that implements the idea of distributed computing. Many client/server environments use a local area network (LAN) to support a network of personal computers—each with its own storage—that are also able to share common devices (such as a hard disk or printer) and software (such as a DBMS) attached to the LAN. Several client/server architectures have evolved; they can be distinguished by the distribution of application logic components across clients and servers.

d. Middleware. A type of software that allows an application to interoperate with other software without requiring the user to understand and code the low-level operations

e. Stored procedure. A module of code, usually written in a proprietary language such as Oracle’s PL/SQL or Sybase’s Transact-SQL. It implements application logic or a business rule and is stored on the server, where it runs when called.

f. Three-tier architecture. A client/server configuration that includes three layers: a client layer and two server layers. Although the nature of the server layers differs, common configurations include an application server or a transaction server.

g. Java Database Connectivity (JDBC). JDBC enables Java programs to execute SQL statements and connect to database servers. It is similar to ODBC but is designed specifically for Java applications.

h. XML Schema. A language used for defining XML databases that has been recommended by the WWW Consortium

i. Web services. Set of emerging standards that define protocols for communication between software programs over the Web

j. XSLT A language used to transform complex XML documents and also used to create HTML pages from XML documents

k. SOAP/Simple Object Access Protocol. An XML-based communication protocol used for sending messages between applications via the Internet

2. Match terms with appropriate definitions:
g
client/server system

h
application program interface (API)

a
fat client

f
database server

e
middleware

i
three-tiered architecture

c
thin client

j
XSD

d
SOA

b
W3C

3.
Advantages of client/server architectures: With their ability to accept an open systems approach, client/server architectures have offered businesses opportunities to better fit their computer systems to their needs. Their major advantages are:

a. Functionality can be delivered in stages to the end-users. Thus, it arrives more quickly as the first pieces of the project are deployed.

b. The GUI interfaces common in client/server environments encourage users to utilize the applications’ functionality.

c. The flexibility and scalability of client/server solutions facilitate business process re-engineering.

d. More processing can be performed close to the source of data being processed, thereby improving response times and reducing network traffic.

e. Client/server architectures allow the development of Web-enabled applications, facilitating the ability of organizations to communicate effectively internally and to conduct external business over the Internet.
4. Contrast the following terms:

a. Two-tier architecture; three-tier architecture. Two-tier architecture distributes presentation logic on the client, storage logic on the server, and then places the processing logic either on the client, server, or distributed between the server and client. Three-tier architectures include another server in addition to the client and database server layers; they allow application code to be stored on the additional server.
b. Fat client; thin client. A distinction among client capabilities that is based on processing capabilities, a fat client is responsible for more processing—including presentation logic, extensive application logic, and business rules logic—while a thin client is responsible for much less processing.

c. ODBC; JDBC. While ODBC is a language independent application programming interface for accessing and processing SQL databases, JDBC is language specific and designed for JAVA.

d. XHTML; XSLT. XHTML is an extension of HTML that makes HTML compliant with Extensible Markup Language (XML). XSLT stands for Extensible Stylesheet Language Transformation and refers to the language used to transform complex XML documents and to create HTML pages from XML documents.

e. SQL; XQuery. SQL is a de facto standard language for creating and querying relational databases. XQuery is an XML transformation language that allows applications to query both relational databases and XML data.

f. Web services; SOA. Web services are a set of standards that define protocols for communication between software programs over the Web using XML. SOA is an architecture with services that pass information between one another. While Web services are XML based, SOA services are not necessarily. An example of an SOA is CORBA.
5. Advantages/disadvantages of two-tier architecture:

a. An advantage of a two-tier architecture using a database server is that LAN traffic can be reduced between clients and the server, as only the result set is transmitted to the client (instead of the entire data file). Also, only the database server requires processing power adequate to handle the database. Further the database server can be tuned to optimize database-processing performance. Security and integrity checking is also centrally located and managed.

b. A disadvantage of the two-tier architecture is that it does not scale well with a larger amount of users, high amounts of transactions, or for mission-critical applications.

6. Some advantages of three-tier and n-tier architectures (Thompson, 1997; see textbook):

c. Scalability. Three-tier architectures are more scalable than two-tier architectures. For example, the middle tier can be used to reduce the load on a database server by using a TP monitor to reduce the number of connections to a server.

d. Technological flexibility. It is easier to change DBMS engines with a three-tier architecture, though triggers and stored procedures will need to be rewritten. The middle tier can even be moved to a different platform. Simplified presentation services make it easier to implement various desired interfaces such as Web browsers or kiosks.

e. Lower long-term costs. Use of off-the-shelf components or services in the middle tier can reduce costs as can substitution of modules within an application.

f. Better match of systems to business needs. New modules can be built to support specific business needs rather than building more general, complete applications.

g. Improved customer service. Multiple interfaces can access the same business processes.

h. Competitive advantage. The ability to react to business changes quickly (by changing small modules of code rather than entire applications) can be used to gain a competitive advantage.

i. Reduced risk. Again, the ability to implement small modules of code quickly and combine them with code purchased from vendors limits the risk assumed with a large-scale development project.

 Some disadvantages of three-tier and n-tier architectures:

a. High short-term costs. Implementing a three-tier architecture requires that the presentation component be split from the process component. Accomplishing this split requires more programming in a 3GL language (such as C) than is required in implementing a two-tier architecture.

b. Incompatible standards. There are few proposed standards for TP monitors as yet. There are several competing standards proposed for distributed objects, but it is not yet clear which standard will prevail.

7. Common components needed to create a web-based application:

According to Figure 2, there are four main components including a database server (storage logic and DBMS), a web server (functionality to respond to browser clients requests), an application server (software for creating dynamic Web sites), and a web browser (e.g., Firefox, Safari, Chrome).

8. Database APIs:

The most common APIs are Open Database Connectivity (ODBC) and ADO.NET for the Microsoft platform (VB.NET and C#), and Java Database Connectivity (JDBC) for use with Java programs.
9. Six common steps to access databases:

j. Identify and register a database driver.

k. Open a connection to a database.

l. Execute a query against the database.

m. Process the results of the query.
n. Repeat steps c and d as necessary.
o. Close the connection to the database.
10. Key components to ensuring success with client/server:

p. Development of a plan for distribution, including an analysis of how the distributed system will interact with other systems

q. Analysis of network performance, including projections of load placed on the system by the client/server application: once an analysis has been performed, a plan can be implemented to upgrade the network to handle the increased load

r. Tuning of the production system once in place

s. Implementation of troubleshooting procedures

t. Code management during the development phase

11.
 Three common types of cloud computing services
The three common types of cloud computing services (according to Mell and Grance, 2011; see textbook references) are:
· Infrastructure as a Service (IASS): This arrangement reflects a company’s use of technologies (such as servers, storage, and networks) from external service providers so that the company does not need to buy, run, and maintain such equipment in-house. This level of cloud computing usually reflects the basic hardware and software level of a company’s systems.
· Platform-as-a-Service (PAAS): This arrangement reflects a company’s use of groupings of technological solutions from the external service provider. The types of solutions may include application servers, web servers, and database technologies.
· Software-as-a-Service (SAAS): This arrangement reflects a company’s execution of an entire application or application suite being run on the Internet rather than on a company’s own, internal infrastructure. Examples of SAAS include Salesforce.com’s CRM system, Oracle, and SAP’s recent entry into this market with enterprise-level solutions in the cloud.

12.
Four common approaches to storing XML data:

u. store XML data in a relational database by shredding the XML document

v. store an entire XML document in a field capable of storing large objects, such as a binary large object (BLOB) or a character large object (CLOB)

w. store the XML document using special XML columns that are made available as part of database

x. store the XML document using a native XML database

13.
PHP program components necessary for dynamic Web site:

A PHP program that enables a dynamic Web site will contain a header.inc file that contains HTML code to set up a generic page as well as embedded SQL code.

14.
XML vs. DTD:

An XML schema is a step ahead from a DTD because it allows data types to be denoted.

15.
XSLT VS. XML; role of XML in web application:

XHTML is an extension of HTML that makes HTML compliant with Extensible Markup Language (XML). XSLT stands for Extensible Stylesheet Language Transformation and refers to the language used to transform complex XML documents and to create HTML pages from XML documents. An advantage of XSLT is that it can be used to handle the myriad devices that now access information via the Internet. By using XSLT, XML, and other technologies the same set of data can be rendered onto the different devices without having to write a separate page for each device type (e.g., smartphones, PDAs, etc.).

16.
Discussion of UDDI:

Universal Description, Discovery and Integration is a technical specification for creating a distributed registry of Web services and businesses that are open to communicating through Web services. The white pages category contains general company information. The yellow pages category includes classification information about companies and/or Web services. The green pages section contains technical information about Web services, including how to call them up.

Answers to Problems and Exercises

11. Business and technology characteristics to consider when reaching a client/server adoption decision:

y. Accurate business problem analysis. Just as is the case with other computing architectures, it is critical to develop a sound application design and architecture for a new client/server system. Accurately define the scope of the problem and do an accurate requirement determination; use that information to select the technology.

z. Detailed architecture analysis. It is also important to specify the details of the client/server architecture. Building a client/server solution involves connecting many components that may not work together easily. One of the often touted advantages of client/server computing, the ability to accept an open systems approach, can be very detrimental if the heterogeneous components chosen are difficult to connect. In addition to specifying the client workstations, server(s), network, and DBMS, analysts should also specify network infrastructure, the middleware layer, and the application development tools to be used. At each juncture, analysts should take steps to assure that the tools will connect with the middleware, database, network, and so forth.

aa. Avoiding tool-driven architectures. As above, project requirements should be determined before software tools are chosen, not the reverse. When a tool is chosen first and then applied to the problem, one runs the risk of a poor fit between problem and tool. Tools used in this manner are more likely to have been chosen based on an emotional appeal rather than on the appropriate functionality of the tool.

ab. Achieving appropriate scalability. Moving to a multi-tier solution allows client/server systems to scale to any number of users and handle diverse processing loads. However, multi-tiered solutions are significantly more expensive and difficult to build. The tools to develop a multi-tier environment are still limited, too. Architects should avoid moving to a multi-tier solution when it is not really needed. Usually, multi-tier makes sense in environments of more than 100 concurrent users, high-volume OLTP systems, or for real-time processing. Smaller, less intense environments can frequently run more efficiently on traditional two-tier systems, especially if triggers and procedures are used to manage the processing.

ac. Appropriate placement of services. Again, a careful analysis of the business problem being addressed is important when making decisions about the placement of processing services. The move toward thin clients and fat servers is not always the appropriate solution. Moving the application logic to a server, thus creating a fat server, can affect capacity as end users all attempt to use the application now located on the server. Sometimes it is possible to achieve better scaling by moving application processing to the client. Fat servers do tend to reduce network load because the processing takes place close to the data, and fat servers do lessen the need for powerful clients. Understanding the business problem intimately should help the architect to distribute the logic appropriately.

ad. Network analysis. The most common bottleneck in distributed systems is still the network. Therefore, architects ignore the bandwidth capabilities of the network that the system must use at their peril. If the network cannot handle the amount of information that needs to pass between client and server, response time will suffer badly, and the system is likely to fail.
ae. Be aware of hidden costs. Client/server implementation problems go beyond the analysis, development, and architecture problems listed previously (Atre, 1995). For example, systems that are intended to use existing hardware, networks, operating systems, and DBMSs are often stymied by the complexities of integrating these heterogeneous components together to build the client/server system. Training is a significant and recurring expense that is often overlooked. The complexities of working in a multi-vendor environment can be very costly.
2.
The difference between a static and a dynamic Web site:

A static Web page is fixed in time and cannot receive user input. A dynamic page allows the querying of live data and storage of user input. Using dynamic Web pages is important in the facilitation of e-business because it allows the conduct of business to take place quickly and easily, often without the intervention of costly customer support.

3.
Movement to client/server databases systems:

Mission-critical systems that were resident on mainframe systems a decade ago have tended to remain on mainframe systems. Less mission-critical, frequently workgroup level, systems have been developed using client/server architectures. However, the popularity of client/server architectures and the strong desire to achieve more effective computing in more distributed environments as business perspectives became broader and more global has led to the deployment of mission-critical systems onto client/server architectures. We expect that each organization will need to achieve a balance between mainframe and client/server platforms, and between centralized and distributed solutions, that are closely tailored to the nature of their data and location of business users of the data. As Hurwitz (1996) suggests, data that do not need to be moved often can be centralized on a mainframe. Data to which users need frequent access, complex graphics, and the user interface should be kept close to the users’ workstations.

4.
Languages associated with Internet application development:

There are scripting or markup languages, such as HTML, XHTML, and XML. These scripting languages are intended for handling layout and display of documents, rather than for programming functions. General purpose, object-oriented languages were brought into use for these activities. Java is an example of one of these. Small Java programs, called Java applets, download from the Web server to the client and run in a Java-compatible Web browser. JavaScript is a scripting language based on Java, but it is easier to learn. JavaScript can be used to achieve interoperability and dynamic content. VBScript, based upon Visual Basic but easier to learn, can be used to create interactive Web pages. Cascading style sheets (CSS) have been developed to allow both a developer and a user to create style sheets that can define any Web page.

5.
Annotation of dynamic Web site code: Student answers will vary based on the site(s) used for this exercise.

6.
 Re-write Figure 5 using VB.NET:
Dim conn As New OracleConnection
Dim cmdQuery As String

conn.ConnectionString = "User Id=nisubram;Password=nisubram;
DataSource=oed1;"
 Dim queryReader As OracleDataReader

 cmdQuery = “Select * from Student”

Dim cmd As OracleCommand = New OracleCommand(cmdQuery)

conn.Open()

cmd.Connection = conn

 queryReader = cmd.ExecuteReader()

 While queryReader.Read()

 Console.WriteLine(myReader.GetString(0))

 End While

 queryReader.Close()

conn.Close()

7.
 Re-write Figure 4 using Java:
import java.sql.*;

public class TestJDBC {

public static void main(String[] args) {

try {

Driver d = (Driver)Class.forName("oracle.jdbc.driver.OracleDriver").newInstance();

System.out.println(d);

DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());

String deptNo;

String name;

String studentID;

//Note: The code below assumes that you have retrieved appropriate values for deptno, name //and studentid from the command console

Connection conn = DriverManager.getConnection(

"jdbc:oracle:thin:@durga.uits.indiana.edu:1521:OED1", args[0], args[1]);

PreparedStatement ps = conn.prepareStatement(“INSERT INTO Student (name,deptno,student_id) VALUES (?, ?, ?)");
 ps.setString (1, name);

 ps.setString (2, deptNo);

ps.setString (3, studentID);

int result = st.executeUpdate();

if (result > 0) {

System.out.println(“Success”);

}

conn.close();

}

catch (Exception e) {

System.out.println("Error - " + e);

}

}

}

8.
Sample code in Figures 10, 11, and 12 – necessary changes? In Figures 10 and 11, the only thing that will need to change is the connection string, i.e., the part that identifies the name/address of the database that you connect to. This connection string will be provided to you by the cloud service provider. The connection strings can be found in the textboxes labeled “connect to the database” in the respective figures. In 12, no change is required in the code. However, when setting up the system, you will need to connect to the cloud service provider.
9.
Student answers will vary based on expertise and research.
10.
Note to Instructor: Students may find it helpful to prototype the TUTOR relation. Notice that the TUTOR table used here is not identical to the one used in Chapters 6 and 7, where a supertype, PERSON, was used.
Note:
This solution is based on a Microsoft Access 2003 database with sample data entered for the Tutor table; your student answers will vary based on the table structure they have developed and the test data they have created. MS Access permits you to export a table as XML; MS Access creates an HTML document (.html), an XML document, an XML schema (.xsd), and the XML stylesheet (.xsl) for the table you select to Export as XML.

The XSD schema (required—showing structure) and the XML document (optional—showing record values) are presented as part of the solution following.

XSD SCHEMA (TUTOR.XSD)
<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:od="urn:schemas-microsoft-com:officedata">

<xsd:element name="dataroot">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="TUTOR" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="generated" type="xsd:dateTime"/>

</xsd:complexType>

</xsd:element>

<xsd:element name="TUTOR">

<xsd:annotation>

<xsd:appinfo>

<od:index index-name="PrimaryKey" index-key="TUTORID " primary="yes" unique="yes" clustered="no"/>

<od:index index-name="TUTORID" index-key="TUTORID " primary="no" unique="no" clustered="no"/>

</xsd:appinfo>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element name="TUTORID" minOccurs="1" od:jetType="longinteger" od:sqlSType="int" od:nonNullable="yes" type="xsd:int"/>

<xsd:element name="TLNAME" minOccurs="1" od:jetType="text" od:sqlSType="nvarchar" od:nonNullable="yes">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="50"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="TFNAME" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="50"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="TPHONE" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="14"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="TEMAIL" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="25"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="CERTDATE" minOccurs="1" od:jetType="datetime" od:sqlSType="datetime" od:nonNullable="yes" type="xsd:dateTime"/>

<xsd:element name="STATUS" minOccurs="1" od:jetType="text" od:sqlSType="nvarchar" od:nonNullable="yes">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="10"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Problem and Exercise 10, continued (optional display of XML, with record values shown)

XML DOCUMENT (TUTOR.XML)

<?xml version="1.0" encoding="UTF-8"?>

<dataroot xmlns:od="urn:schemas-microsoft-com:officedata" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="TUTOR.xsd" generated="2007-12-30T15:37:43">

<TUTOR>

<TUTORID>100</TUTORID>

<TLNAME>Lupin</TLNAME>

<TFNAME>Remus</TFNAME>

<TPHONE>906-487-1500</TPHONE>

<TEMAIL>lupin@hogwarts.edu</TEMAIL>

<CERTDATE>2008-01-05T00:00:00</CERTDATE>

<STATUS>Active</STATUS>

</TUTOR>

<TUTOR>

<TUTORID>101</TUTORID>

<TLNAME>Moody</TLNAME>

<TFNAME>Mad-Eye</TFNAME>

<TPHONE>906-487-1500</TPHONE>

<TEMAIL>moody@hogwarts.edu</TEMAIL>

<CERTDATE>2008-01-05T00:00:00</CERTDATE>

<STATUS>Temp Stop</STATUS>

</TUTOR>

<TUTOR>

<TUTORID>102</TUTORID>

<TLNAME>Umbridge</TLNAME>

<TFNAME>Dolores</TFNAME>

<TPHONE>906-487-1500</TPHONE>

<TEMAIL>prettyinpink@hogwarts.edu</TEMAIL>

<CERTDATE>2008-01-05T00:00:00</CERTDATE>

<STATUS>Dropped</STATUS>

</TUTOR>

<TUTOR>

<TUTORID>103</TUTORID>

<TLNAME>Dumbledore</TLNAME>

<TFNAME>Albus</TFNAME>

<TPHONE>906-487-1500</TPHONE>

<TEMAIL>fawkes@hogwarts.edu</TEMAIL>

<CERTDATE>2008-05-22T00:00:00</CERTDATE>

<STATUS>Active</STATUS>

</TUTOR>

<TUTOR>

<TUTORID>104</TUTORID>

<TLNAME>Sprout</TLNAME>

<TFNAME>Pomona</TFNAME>

<TPHONE>906-487-1500</TPHONE>

<TEMAIL>sprout@hogwarts.edu</TEMAIL>

<CERTDATE>2008-05-22T00:00:00</CERTDATE>

<STATUS>Active</STATUS>

</TUTOR>

<TUTOR>

<TUTORID>105</TUTORID>

<TLNAME>Black</TLNAME>

<TFNAME>Sirius</TFNAME>

<TPHONE>906-487-1500</TPHONE>

<TEMAIL>black@hogwarts.edu</TEMAIL>

<CERTDATE>2008-05-22T00:00:00</CERTDATE>

<STATUS>Temp Stop</STATUS>

</TUTOR>

<TUTOR>

<TUTORID>106</TUTORID>

<TLNAME>Snape</TLNAME>

<TFNAME>Severus</TFNAME>

<TPHONE>906-487-1500</TPHONE>

<TEMAIL>hbprince@hogwarts.edu</TEMAIL>

<CERTDATE>2008-05-22T00:00:00</CERTDATE>

<STATUS>Active</STATUS>

</TUTOR>

</dataroot>

11.
Develop a FLOWR XQuery. Note: The WHERE is not needed as there is no criterion for selection of a subset of Tutors:
for $p in doc("TUTOR.XML")/TUTOR/TLNAME

order by $p/TLNAME

return $p/TLNAME

12.
Write an XSLT program to display TUTOR information in the form of an HTML table.
<?xml version = “1.0”?>

<xsl:stylesheet version=”1.0” xmlns:xsl=http://www.w3.org/1999/XSL/Transform>

<xsl:template match=”/”>

<html>

<body>

<h2> Tutor Listing </h2>

<table border = “1”>

<tr bgcolor=”orange”>

<th> TutorId </th>

<th> Last Name </th>

<th> First Name </th>

<th> Phone </th>

<th> Email </th>

<th> Cert Date </th>

<th> Status </th>

</tr>

<xsl:for-each select=”TUTOR/TUTOR”>

<tr>

<td><xsl:value-of select=”TutorID”/></td>

<td><xsl:value-of select=”TLName”/></td>

<td><xsl:value-of select=”TFName”/></td>

<td><xsl:value-of select=”TPhone”/></td>

<td><xsl:value-of select=”TEmail”/></td>

<td><xsl:value-of select=”CertDate”/></td>

<td><xsl:value-of select=”Status”/></td>

</tr>

</xsl:for-each>

</table>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

13.
Student answers will vary based on expertise and research.
Suggestions for Field Exercises

1 & 2.
Students may be helped when structuring their approach to any of these questions by being encouraged to ask questions that briefly describe the historical trends. This gives the interviewee an idea of the student’s level of knowledge, and it provides a starting point to discuss the university’s, department’s, or organization’s situation. Those that already own some legacy systems tend to further utilize them because development and implementation costs have been paid. Students may find that each retains its mainframes but moves strategically important applications to front-end distributed systems. Common problems in this process include poor integration of products from multiple vendors, inadequate performance, lack of support for security and database integrity, flawed communications programs, and lack of network-management facilities.

3. Examples of such sites may be those that allow visitors or customers to browse inventory records and place orders. There are questions we could ask in order to evaluate the overall functionality of the site. Some examples of such questions could be: Is the Web site content organized to emphasize specific areas? If so, is there easy access to those areas? How many clicks are necessary to locate the needed information? A good approach to working on this problem could be to find out which of the answers were highly influenced by the database connectivity level. Also, the site’s developer may be asked for the results of the site testing. Tests are usually performed with a specially developed tool like Mercury Interactive’s LoadRunner, a product that can simulate 50 million hits a day or 3,000 simultaneous users. Question 3 allows the instructor to discuss the concept of usability, if he or she wishes.

4. This answer will vary depending upon the software chosen and the type of network and Web site chosen.

5. This is left as a student exercise, based upon the type of data access required. Student answers will vary.

6. This is left as a student exercise. Student answers will vary.

7. This is left as a student exercise. Student answers will vary.

Case Questions

1. While the Mountain View IT staff may be able to undertake the project of moving toward an integrated environment, some concerns may be higher short-term costs, including acquiring advanced tools and incurring training costs. Also, it is not possible to know at the time when the decision is made to adopt, what the final product would look like. Other issues include compliance with HIPAA regulations. It may be better to outsource the project to a consulting firm that has had more experience developing an integrated environment. The hospital will also need to make a commitment to the IT staff to provide training that will enable them to understand the range of choices. They can work effectively with any outside consultants or vendors to reach the decision and then perform the implementation successfully. Internal expertise must be good enough to enable a wise business decision as vendors will be more focused on selling their product than meeting the business needs of Mountain View.
2. The four choices seem to offer a wide range of options for MVCH. One additional possibility is parallel processing.

3. This is a question that should be thoroughly considered by the planning committee. The issues around patient care and confidentiality are different from the issues faced by other businesses. Patients with certain diseases are often treated prejudicially if their privacy is violated, and multi-million-dollar lawsuits have arisen over these issues. In addition, there are some diseases a patient needs to hear diagnosed in person, not over a Web page. The importance of addressing privacy and security concerns cannot be overstated to your students.

4. The healthcare industry has been slower to embrace Web services due to the mission critical nature of healthcare applications as well as the very specific proprietary healthcare information systems that are still in widespread use today. If a hospital has to face using Web services to integrate many different proprietary systems for various departments, the integration challenge is substantial. Mountain View Community Hospital would view Web services as a success if there could be a guarantee that the data provided by the system was accurate and could be delivered in a timely fashion. Also, there must be assurance of privacy and security.

The potential implementation of Web-based solutions should be treated as a strategy issue because the impact of a quality system reaches far beyond those who use the system in healthcare but also to patients and the community as a whole.

Case Exercises

1. The advantages of moving toward an integrated environment would be the ability to leverage the existing systems while also utilizing some new technologies. This should improve performance. The downside to this is that the data quality would be only as good as the legacy systems’ data quality. Migration to a new system provides opportunity to perform data scrubbing. Often the most difficult challenge is integrating the legacy systems with the three-tier architecture. Discuss specific recommendations for technology in class after students have done some research on the Internet.

2. The fully integrated approach would provide many advantages such as commonalities in user interfaces; a stable hardware platform across the enterprise; and the possibility of integrating existing systems using a phased, rollout approach. Once again, data quality is a challenge as well as migration of existing legacy data. Also, the legacy systems may not be well documented, so there may be a steep learning curve for the staff that performs the migration.

3. This is an excellent question for an in-class debate between two teams of students. Each team should be assigned one of the approaches and should develop a defense for that approach. Another portion of the class could serve in the role of business sponsor and determine, based upon the arguments presented, which solution would be the best way to go.

4. The advantages to thin clients include cost savings as well as easier maintenance because the application itself does not reside on the client. Perhaps the most beneficial thin client device would be a PC utilizing an intranet and a browser-based application because this does not require any special software other than a browser and network drivers. One could also imagine utilizing wireless devices in order to access browser-based applications. The hard-wired clients using a secure intranet would be the best approach in order to ensure compliance with HIPAA privacy and security regulations. The substantial cost savings would support MVCH’s pursuit of a thin client strategy.

5. MVCH planning committee concerns:
5.1 Submitting insurance claims online:

a. Security and confidentiality concerns. Only billing staff need access to this information. Files containing this information can be protected with passwords and database privileges. How likely the proposed system is to be compromised will depend upon the systems chosen.

b. Data entry requirements. Each division should handle its own data entry, which will motivate each department to be accurate (because they will be the ones using the data). This will also avoid resentment between departments being made to do another’s data entry.

c. Benefits and costs. There will be the costs of people to implement and maintain the system. The benefits will include increased accessibility of data, decreased data entry time, and greater ability to cross-reference.

5.2 Providing clinical information to patients online:

a. Security and confidentiality concerns. Patients should be able to access only their own information. Sensitive information, such as a diagnosis of a terminal disease, should not be placed online until after a physician has counseled the patient. Security should be strong because of the risk of data misuse.

b. Data entry requirements. Appointment clerks should enter the initial data for new patients and all information relating to new appointments. Billing staff should enter billing and diagnosis information. Patient care specialists, such as medical stenographers, should be assigned to transcribe physicians’ notes. While each division will be entering their own data, friction should be minimized unless one division is more careless than another, and another department has to correct the mistakes.

c. Benefits and costs. The benefits can include decreased time on the telephone for physicians answering patient questions and patients receiving results faster. Costs will include the cost of the network and the security mechanisms required.

5.3 Implementing supply-chain management online:

a. Security and confidentiality concerns. These concerns will not be as pressing as for the patient care functions.

b. Data entry requirements. These will also be minimized since generally suppliers today have their own Web sites, online ordering, and often EDI.

c. Benefits and costs. The costs will be greatly outweighed by the benefits. Secure online ordering, minimized data entry, and up-to-the-minute price and account information will make the organization much more efficient.
5.4 Providing medical records to other facilities:

a. Security and confidentiality concerns. These would be a major concern because electronic transmission could be intercepted. The strictest security policies would have to be implemented, including such things as encryption. Also, patients would have to sign a written release form.

b. Data entry requirements. It is assumed that all of the data would be extracted from existing systems.

c. Benefits and costs. Such a system would have a tremendous benefit in that patients could go to any number of hospitals in a region, and staff would have access to their entire medical records. The costs for security could be substantial.

5.5 Implementing an online medical knowledgebase

a. Security and confidentiality concerns. The hospital would have to decide whether or not to allow public access to the knowledge base.

b. Data entry requirements. It is reasonable to assume that much of the knowledge base information would be purchased.

c. Benefits and costs. The benefits to the patients and staff would be substantial. The greatest cost would be the actual content.

Implementing the submission of insurance claims online would be recommended because it would have the greatest direct benefit in streamlining the billing process.

Note to Instructor: The solution to Case Exercise 6 is based on a pre–ninth edition database of the Mountain Valley Community Hospital and is presented for illustrative purposes only. The solution presented here does not correspond to the suggested design solutions in earlier chapters due to the extensive updating of the case in the ninth edition.

6.

a.
Patient_t table as an XML file:

<PATIENT_t>

<PatientID>13</PatientID>

<PersonID>12</PersonID>

<PhysicianID>9723</PhysicianID>

<AdmissionType>Outpatient</AdmissionType>

<ContactDate>2001-04-22T00:00:00</ContactDate>

<ContactTime>1899-12-30T14:40:00</ContactTime>

</PATIENT_t>

<PATIENT_t>

<PatientID>14</PatientID>

<PersonID>13</PersonID>

<PhysicianID>9801</PhysicianID>

<AdmissionType>Resident</AdmissionType>

<ContactDate>2001-04-22T00:00:00</ContactDate>

<ContactTime>1899-12-30T14:45:00</ContactTime>

<BedID>AE-102-1</BedID>

</PATIENT_t>

<PATIENT_t>

<PatientID>15</PatientID>

<PersonID>14</PersonID>

<PhysicianID>9945</PhysicianID>

<AdmissionType>Resident</AdmissionType>

<ContactDate>2001-04-22T00:00:00</ContactDate>

<ContactTime>1899-12-30T15:10:00</ContactTime>

<BedID>AE-103-1</BedID>

</PATIENT_t>

<PATIENT_t>

<PatientID>16</PatientID>

<PersonID>15</PersonID>

<PhysicianID>9624</PhysicianID>

<AdmissionType>Outpatient</AdmissionType>

<ContactDate>2001-04-22T00:00:00</ContactDate>

<ContactTime>1899-12-30T15:30:00</ContactTime>

</PATIENT_t>

<PATIENT_t>

<PatientID>17</PatientID>

<PersonID>17</PersonID>

<PhysicianID>9723</PhysicianID>

<AdmissionType>Resident</AdmissionType>

<ContactDate>2001-04-22T00:00:00</ContactDate>

<ContactTime>1899-12-30T15:34:10</ContactTime>

<BedID>GC-100-1</BedID>

</PATIENT_t>

</dataroot>

b.
Query related to PATIENT table as an XML file. Both the XML data as well as the schema are shown following:

XML

<?xml version="1.0" encoding="UTF-8"?>

<dataroot xmlns:od="urn:schemas-microsoft-com:officedata" xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance" xsi:noNamespaceSchemaLocation="CH8-a1.xsd">

<CH8-a1>

<Patientx0020ID>11</Patientx0020ID>

<Patientx0020Name>Bronson Chuck</Patientx0020Name>

<BedID>AE-100-1</BedID>

<AdmissionType>Resident</AdmissionType>

</CH8-a1>

<CH8-a1>

<Patientx0020ID>12</Patientx0020ID>

<Patientx0020Name>Freeman Rita</Patientx0020Name>

<AdmissionType>Outpatient</AdmissionType>

</CH8-a1>

<CH8-a1>

<Patientx0020ID>13</Patientx0020ID>

<Patientx0020Name>Grost Anita</Patientx0020Name>

<BedID>AE-102-1</BedID>

<AdmissionType>Resident</AdmissionType>

</CH8-a1>

<CH8-a1>

<Patientx0020ID>14</Patientx0020ID>

<Patientx0020Name>Danger Johnny</Patientx0020Name>

<BedID>AE-103-1</BedID>

<AdmissionType>Resident</AdmissionType>

</CH8-a1>

<CH8-a1>

<Patientx0020ID>15</Patientx0020ID>

<Patientx0020Name>Nickolson Steven</Patientx0020Name>

<AdmissionType>Outpatient</AdmissionType>

</CH8-a1>

<CH8-a1>

<Patientx0020ID>17</Patientx0020ID>

<Patientx0020Name>Slinestone Wilma</Patientx0020Name>

<BedID>GC-100-1</BedID>

<AdmissionType>Resident</AdmissionType>

</CH8-a1>

</dataroot>

Schema

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2000/10/XMLSchema" xmlns:od="urn:schemas-microsoft-com:officedata">

<xsd:element name="dataroot">

<xsd:complexType>

<xsd:choice maxOccurs="unbounded">

<xsd:element ref="CH8-a1"/>

</xsd:choice>

</xsd:complexType>

</xsd:element>

<xsd:element name="CH8-a1">

<xsd:annotation>

<xsd:appinfo/>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Patientx0020ID" od:jetType="autonumber" od:sqlSType="int" od:autoUnique="yes" od:nonNullable="yes">

<xsd:simpleType>

<xsd:restriction base="xsd:integer"/>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Patientx0020Name" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="255"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="BedID" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="12"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="AdmissionType" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="10"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

c.
For this exercise, a simple report in Access was created to show treatment information. The report is named treatpers:

[image: image1.png]osoft Internet Explorer,

Vew Favories

C= Q HRE®

oss [8) Ciestirestpers i

st ernons @ (-0 @ - JH QOB

PERSON_t

Person_Last Name Treatment_Date Treatment_Name
Chuck

42202001 Physical

Friday, July 26, 2006 Page Iof 1

A module was created within MS-Access 2003 to generate the XML code:

Option Compare Database

Private Sub ExportReport()

 ' Purpose: Exports the Invoice table as well as

 ' the presentation and image files. In addition,

 ' a file containing the ReportML is created as

 ' denoted by setting the OtherFlags flag equal

 ' to 16.

 Const CREATE_REPORTML = 16

 Application.ExportXML _

 ObjectType:=acExportReport, _

 DataSource:="treatpers", _

 DataTarget:="C:\test\treatpers.xml", _

 PresentationTarget:="C:\test\treatpers.xsl", _

 ImageTarget:="C:\test\Images", _

 OtherFlags:=CREATE_REPORTML

End Sub

This generates four files: treatpers.xml, treatpers.xsl, treatpers.html, and treatpers_report.xml In order to run the report in a browser, simply open the html file.

Project Assignments

P1.

This project assignment depends upon the type of RDBMS being used by the class.

P2.

a. You could establish the second database as a remote database server.

b. You might want to have a separate schema for Dr. Z’s system, then export the original set of tables and import these into the MVCH database instance.

P3.
For this assignment, a user login screen is created. This assumes that a MySQL table called “users” is already in existence. In order to access MySQL, mysql_connect.php must reside in the directory above where the php code is going to be placed. Also, an images file is needed where a .jpg file can be placed to display.

<?php # - mysql_connect.php

// This file contains the database access information. This file also establishes a connection to MySQL and selects the database.

// Set the database access information as constants.

DEFINE ('DB_USER', 'shoretoshore');

DEFINE ('DB_PASSWORD', 'shore');

DEFINE ('DB_HOST', 'localhost');

DEFINE ('DB_NAME', 'test');

// Make the connection and then select the database.

$dbc = @mysql_connect (DB_HOST, DB_USER, DB_PASSWORD) OR die ('Could not connect to MySQL: ' . mysql_error());

mysql_select_db (DB_NAME) OR die ('Could not select the database: ' . mysql_error());

?>

mysql_connect.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

<title><?php echo $page_title; ?></title>

</head>

<body>

<!-- - header.inc -->

<table border="0" cellspacing="0" cellpadding="4">

 <tr> <!-- TOP ROW -->

 <td rowspan="2" bgcolor="#999966"></td>

 <td width="*" bgcolor="#999966">Mountain View Community Hospital
Patient Information System
Login Screen
</td>

 <td width="10" rowspan="2" bgcolor="#999966"> </td>

 </tr>

 <tr> <!-- NAVIGATIONAL ROW -->

 <td bgcolor="#CC9933">

 <table width="100%" border="0" cellspacing="2" cellpadding="2">

 <tr>

 <td width="20%" align="center" bgcolor="#FFCC66">Home</td>

 <td width="20%" align="center" bgcolor="#FFCC66">Register</td>

 <td width="20%" align="center" bgcolor="#FFCC66">Login</td>

 </tr>

 </table>

 </td>

 </tr>

 <tr> <!-- CONTENT ROW -->

 <td bgcolor="#999966"> </td>

 <td bgcolor="#FFFFFF"><!-- PAGE SPECIFIC CONTENT STARTS HERE -->

MVCHHeader.inc

<!-- PAGE CONTENT ENDS HERE --></td>

 <td width="10" bgcolor="#999966"> </td>

 </tr>

 <tr> <!-- FOOTER NAVIGATIONAL ROW -->

 <td bgcolor="#999966"> </td>

 <td bgcolor="#CC9933"><div align="center"><small> º Register º Login º</small></div></td>

 <td width="10" bgcolor="#999966"> </td>

 </tr>

 <tr> <!-- COPYRIGHT ROW -->

 <td bgcolor="#999966"> </td>

 <td bgcolor="#999966">

 <div align="center"></div></td>

 <td bgcolor="#999966"> </td>

 </tr>

</table> <!-- Script 6.2 - footer.inc -->

</body>

</html>

MVCHFooter.inc

<?php # MVCHLogin.php

// Set the page title and include the HTML header.

$page_title = 'Change Your Password';

include ('templates/mvchheader.inc');

if (isset($_POST['submit'])) { // Handle the form.

require_once ('../mysql_connect.php'); // Connect to the db.

// Create a function for escaping the data.

function escape_data ($data) {

global $dbc; // Need the connection.

if (ini_get('magic_quotes_gpc')) {

$data = stripslashes($data);

}

return mysql_real_escape_string($data, $dbc);

} // End of function.

$message = NULL; // Create an empty new variable.

// Check for a username.

if (empty($_POST['username'])) {

$u = FALSE;

$message .= '<p>You forgot to enter your username!</p>';

} else {

$u = escape_data($_POST['username']);

}

// Check for an existing password.

if (empty($_POST['password'])) {

$p = FALSE;

$message .= '<p>You forgot to enter your password!</p>';

} else {

$p = escape_data($_POST['password']);

}

if ($u && $p) { // If everything's OK.

$query = "SELECT user_id FROM users WHERE (username='$u' AND password=PASSWORD('$p'))";

$result = @mysql_query ($query);

$num = mysql_num_rows ($result);

if ($num == 1) {

echo '<p>Welcome to the MVCH System.</p?';

include ('templates/footer.inc'); // Include the HTML footer.

exit(); // Quit the script.

} else {

$message = '<p>Your username and password do not match our records.</p>';

}

mysql_close(); // Close the database connection.

} else {

$message .= '<p>Please try again.</p>';

}

} // End of the main Submit conditional.

// Print the error message if there is one.

if (isset($message)) {

echo '', $message, '';

}

?>

<form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="post">

<fieldset><legend>Enter your information in the form below:</legend>

<p>User Name: <input type="text" name="username" size="10" maxlength="20" value="<?php if (isset($_POST['username'])) echo $_POST['username']; ?>" /></p>

<p>Password: <input type="password" name="password" size="20" maxlength="20" /></p>

</fieldset>

<div align="center"><input type="submit" name="submit" value="Login" /></div>

</form><!-- End of Form -->

<?php

include ('templates/mvchfooter.inc'); // Include the HTML footer.

?>

MVCHLogin.php

P2. For this assignment, the Person table with a small amount of data is used.

<?xml version="1.0" encoding="UTF-8"?>

<dataroot xmlns:od="urn:schemas-microsoft-com:officedata" xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance" xsi:noNamespaceSchemaLocation="Patient.xsd">

<Patient>

<PTPersonID>21</PTPersonID>

<MRN>3412</MRN>

<PPersonID>12</PPersonID>

</Patient>

<Patient>

<PTPersonID>34</PTPersonID>

<MRN>1231-23</MRN>

<PPersonID>212</PPersonID>

</Patient>

<Patient>

<PTPersonID>56</PTPersonID>

<MRN>2352</MRN>

<PPersonID>435</PPersonID>

</Patient>

<Patient>

<PTPersonID>235</PTPersonID>

<MRN>342</MRN>

<PPersonID>466</PPersonID>

</Patient>

<Patient>

<PTPersonID>97</PTPersonID>

<MRN>28</MRN>

<PPersonID>2181</PPersonID>

</Patient>

</dataroot>

person.xml

P3. This solution uses a simple report to print out the visits.

<?xml version="1.0" encoding="UTF-8"?>

<dataroot xmlns:od="urn:schemas-microsoft-com:officedata" xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance" xsi:noNamespaceSchemaLocation="Visit.xsd">

<Visit>

<OPPTPersonID>21</OPPTPersonID>

<Date>2001-01-01T00:00:00</Date>

</Visit>

<Visit>

<OPPTPersonID>23</OPPTPersonID>

<Date>2001-01-03T00:00:00</Date>

</Visit>

<Visit>

<OPPTPersonID>23</OPPTPersonID>

<Date>2006-01-05T00:00:00</Date>

</Visit>

</dataroot>

visit.xml

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2000/10/XMLSchema" xmlns:od="urn:schemas-microsoft-com:officedata">

<xsd:element name="dataroot">

<xsd:complexType>

<xsd:choice maxOccurs="unbounded">

<xsd:element ref="Visit"/>

</xsd:choice>

</xsd:complexType>

</xsd:element>

<xsd:element name="Visit">

<xsd:annotation>

<xsd:appinfo>

<od:index index-name="PrimaryKey" index-key="OPPTPersonID Date " primary="yes" unique="yes" clustered="no"/>

<od:index index-name="OPPTPersonID" index-key="OPPTPersonID " primary="no" unique="no" clustered="no"/>

</xsd:appinfo>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element name="OPPTPersonID" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="5"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Date" minOccurs="0" od:jetType="datetime" od:sqlSType="datetime" type="xsd:timeInstant"/>

<xsd:element name="Comments" minOccurs="0" od:jetType="text" od:sqlSType="nvarchar">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="50"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

visit.xsd

Close the connection

Copyright © 2013 Pearson Education, Inc. publishing as Prentice Hall
Copyright © 2013 Pearson Education, Inc. publishing as Prentice Hall

