330
Modern Database Management, Eleventh Edition

Chapter 7
329

Chapter 7 Advanced SQL

Chapter Overview

Chapter 7 follows from Chapter 6, from single table queries to multi-table joins, subqueries (both non-correlated and correlated), establishing referential integrity, and derived tables. Triggers, stored procedures, functions, embedded SQL, dynamic SQL, and Persistent Stored Modules are also covered. This chapter also contains a detailed discussion of transaction integrity as well as the SQL:200n enhancements and extensions to SQL and an overview of data dictionaries. Chapter 6 is a prerequisite for this chapter.

Chapter Objectives

Specific student learning objectives are included at the beginning of the chapter. From an instructor’s point of view, the objectives of this chapter are to:

1. Build the student’s SQL skills and an appreciation of SQL through many examples of relational queries from SQL; demonstrate capabilities such as multiple-table data retrieval (join and other operators such as difference, union, and intersection), explicit and implicit joining, and built-in functions.

2. Illustrate the differences between the joining and subquery approaches to manipulating multiple tables in SQL.

3. Introduce the transaction and concurrency control features of relational DBMSs.

4. Discuss the SQL:200n enhancements to SQL.

5. Briefly discuss the data dictionary facilities available in Oracle 10g.

6. Discuss triggers and stored procedures and provide examples of how these might be used.

7. Briefly discuss dynamic and embedded SQL.

8. Understand the use of user-defined data types in large database installations.

Key Terms

	Correlated subquery
	Function
	Persistent Stored Modules (SQL/PSM)

	Dynamic SQL
	Join
	Procedure

	Embedded SQL
	Natural Join
	Trigger

	Equi-join
	Outer Join
	User-defined data type (UDT)

Classroom Ideas

1. Have students program in a system that supports SQL along with this chapter. The nuances of joining multiple tables, nesting subqueries, properly qualifying built-in functions, and so forth are really only learned by writing a wide variety of non-trivial queries. There are exercises at the end of the chapter that will provide such practice for students.

2. If students have access to Oracle, have them take a look at the various data dictionary views available to them as a user. You may also want to discuss the various DBA views available and show these to the students during your lecture. Remember that Teradata University supports Oracle for classroom use, and that you may set up access for yourself and your students. The databases from the text are available, as are much larger datasets that you may want to use. Teradata University’s home page is www.teradatastudentnetwork.com.

3. When discussing multiple table queries, always emphasize that there is more than one way to write a query. For example, show the students a query using a join and then the same query using subqueries.

4. Emphasize the cases when a subquery is needed and cannot be substituted with a join. A good example of this would be the case where one needs to find all customers who have never purchased a product (using a subquery with the NOT IN qualifier).

5. Develop an exercise for the students to explore the effects of a trigger. Have them create and populate some tables, then write an insert trigger for one of the tables that might impact other tables. You could then have the students insert some records and see the results. It is important to show the effects of triggers through examples that the students can try out, followed by problems that they would have to solve by writing triggers. The same can be said for stored procedures.

6. The discussion on SQL/PSM might be a good place to introduce PL/SQL before introducing triggers and stored procedures.

Answers to Review Questions

1. Define each of the following key terms:

a. Dynamic SQL. The process of making an application capable of generating specific SQL code on the fly, as the application is processed

b. Correlated subquery. This type of subquery is processed outside in, rather than inside out. That is, the inner query is executed for each row in the outer query, and the inner query depends in some way on values from the current row in the outer query.

c. Embedded SQL. The process of including hard-coded SQL statements in a program written in another language such as C or Java

d. Procedure. A collection of procedural and SQL statements that are assigned a unique name within the schema and stored in the database

e.
Join. The most frequently used relational operation, which brings together data from two or more related tables into one result table

f.
Equi-join. A join in which the joining condition is based on equality between values in the common columns. It produces a table of rows composed of columns from two other tables, where common columns appear (redundantly) in the result table.

g.
Self-join. A join that requires matching rows in a table with other rows in the same table. This is a join that joins a table with itself and often occurs with the presence of a unary relationship in the database, such as a Supervisor or Manager of Employees within an Employee Table.

h. Outer join. A join in which rows that do not have matching values in common columns are nevertheless included in the result table. Outer joins return all the values in one of the tables included in the join, regardless of whether a match exists in the other table(s) or not.

i. Function. A stored subroutine that returns one value and has only input parameters

j. Persistent Stored Modules (SQL/PSM). Extensions defined in SQL:1999 that include the capability to create and drop modules of code stored in the database schema across user sessions

2.
Match the following terms to the appropriate definitions:

e
equi-join

i
natural join

d
outer join

j
trigger

k
procedure

g
Embedded SQL

b
UDT

f
COMMIT

c
SQL/PSM

h
Dynamic SQL

a
ROLLBACK

3.
Using an outer join instead of a natural join:

Outer joins are often used in database maintenance to find rows that do not have matching values in common columns. Null values appear in columns where there is no match between tables. Another example would be a query that returns all customers—whether they have placed orders in the last four months or not—along with the date of the most recent order placed within the last four months. Customers who have not placed an order would be returned with a null value under most recent order.

4. Explain the processing order of a correlated subquery:

Correlated subqueries use the result of the outer query to determine the processing of the inner query. Thus, the inner query may be somewhat different for each row referenced in the outer query.

5. Explain that any query that can be written using the subquery approach can also be written using the joining approach, but not vice versa:

While SQL*PLUS allows a subquery to return more than one column, most systems allow pairwise joining of one and only one column in an inner query with one column in an outer query. (An exception to this is when a subquery is used with the EXISTS keyword.) You can display data only from the table(s) referenced in the outer query. If you want to include data from the subquery in the result, then you would have to use the join technique because data from the subquery cannot be included in the results. The joining technique is useful when data from several relations are to be retrieved and displayed, and the relationships are not necessarily nested.

6. Purpose of the COMMIT command; its relation to the notion of a business transaction:

a. SQL transactions terminate by executing either a COMMIT or ROLLBACK operation. COMMIT [WORK] takes the contents of the log file and applies them to the database and then empties the log file. There is also an AUTOCOMMIT (ON/OFF) command in many RDBMSs that specifies whether changes are made permanent after each data modification command (ON) or only when work is explicitly made permanent (OFF) by the COMMIT WORK command. These commands are necessary to maintain a valid database and are transparent to the user in most interactive SQL situations.

b. SQL transactions are logical units of work. Either all of the operations performed in the SQL transaction will be committed, or none of the operations will be committed to the database. An SQL transaction may be more involved than an accounting transaction. For example, the entry of a customer order may also trigger inventory adjustment. Executing the COMMIT command will either make permanent changes to all relations involved in the logical unit of work, or it will make changes to none of them.

7. Hidden triggers: They are hard to see coming until they fail to fire. They may fire without notification. Cascading triggers and endless loop triggers are also possible.

8. Structure of a trigger: Three parts of a trigger are identified: the event, condition, and action sections. The event defines the change about to be made, such as an UPDATE or DELETE of a record. The condition section examines the record(s) about to be affected. For each record that meets that condition, the action to be taken by the trigger begins.

9. Usage of UNION clause: Use UNION when you want to combine the output from multiple queries together. However, each query involved must output the same number of rows, and they must be UNION-compatible.

10. Triggers vs. Stored Procedures: Both triggers and routines consist of blocks of procedural code. Routines are stored blocks of code that must be directly called upon to operate against the data in the database. Triggers, in contrast, are stored in the database and run automatically whenever a specified database event occurs (e.g., INSERT, UPDATE, DELETE or ALTER TABLE commands).

11. Persistent Stored Modules: The purpose of Persistent Stored Modules (SQL/PSM) is to make SQL computationally complete (database applications and so forth).

12. Advantages of SQL-invoked routines: Flexibility, efficiency, sharability, applicability.

13. Usage of Embedded vs. Dynamic SQL:
Embedded SQL To create an application where you know exactly what the SQL syntax is that you will need to use.

Dynamic SQL Use where you need to create SQL on the fly, identifying exact parameter values, tables, and so forth at runtime.

14. Utility of CASE keyword: The CASE keyword would be useful in a situation where you might want to assign categories, for example a discount level based upon sales. In this example, one could use the CASE keyword to check the sales level and assign a discount level, such as level 1 for sales < 1000, level 2 for sales >= 1000 and <5000, etc.

15. Usage of derived tables: Derived tables are used to create a temporary table that is treated as if it were an actual table. This table is not persistent in that it goes away after the query in which it was created is run.

16. Example of derived table usage: One example of the use of a derived table would be to find all ships that were loaded beyond capacity. In this example, a shipment’s weight is calculated by computing the sum of the quantity order times the weight. The query follows:

SELECT Ship.ShipNo

 FROM Ship, Shipment,

(SELECT ShipmentLine.ShipmentID,

 SUM(Item.Weight*ShipmentLine.Quantity) AS Tweight

FROM ShipmentLine,Item

WHERE ShipmentLine.ItemNo = Item.ItemNo

GROUP BY ShipmentID) AS ShipWt

WHERE Ship.ShipNo = Shipment.ShipNo

 AND Shipment.ShipmentID = ShipWt.ShipmentID

 AND Ship.Capacity < ShipWt.Tweight;

17. PL/SQL info: SQL by itself is a non-procedural language and no statement execution sequence is implied as in recognized procedural or “programming-like” languages (e.g., Java, C, COBOL, etc.) Prior to the issuance of SQL:1999 standards and capabilities, commercial products did not have a way to perform much “programming-like” actions against database contents, so many commercial products developed their own versions of routines that would function with SQL. PL/SQL is Oracle’s proprietary language that implements the ability to store and run procedural routines (e.g., function or procedure) for a database. A function returns one value and has only input parameters. A procedure may have input parameters, output parameters, and parameters that are both input and output parameters. PL/SQL is Oracle’s way of extending the standard set of SQL actions that can be performed against a database, in response to changing user needs and expanding databases.
18. Data type incompatibility and UNION operation: One possibility would be to convert one of the data types. For example, if one data type is a character and the other numeric, you could use a function such as Oracle’s TO_CHAR to convert the numeric to a character. Another option is to decide which tables might be involved in UNION operations and make sure that the data types are compatible.

19. Using Outer Join with more than two tables: The outer join is not easily implemented for more than two tables. The results vary by RDBMS vendor and should be thoroughly tested before implementing.

20. Data dictionary views for non-Oracle RDBMS: This is left as an exercise for students. The textbook shows examples of different system table names between Oracle and Microsoft SQL Server, which would be one difference in the data dictionary facilities between vendors. Other differences that might be apparent if students have hands-on access to both vendor DBMSs could be what system tables the students/users have access to based on the database authorization and security setup. Comparisons of the major DBMS vendors and their adherence to SQL standards related to data dictionary functions are detailed as a work-in-progress at http://troels.arvin.dk/db/rdbms (accessed 26 May 2010).

Answers to Problems and Exercises
Note to Instructor: The solutions, which include SQL statements, are not intended as the definitive answer to the questions, but as possible solutions. Instructors and students will approach the problems using different SQL capabilities, achieving results that are also correct. We illustrate the SQL statements with capitalized SQL Reserve Words, and Upper/Lower case usage for data names, to be consistent with the textbook treatment of naming conventions. Oracle results, when shown, will display table and column names with all Upper case letters.

Problems 1-5 are based on class scheduling relations in Figure 16.
1.

a. Display the course ID and course name for all courses with an ISM prefix:

Query:
SELECT CourseID, CourseName

FROM Course

WHERE CourseID LIKE ‘ISM%’;

[image: image1.png]Show
CourselD, CourseName
For these instances

‘All CourselDs

CourselD
Beginning.
With

“ISM”

b. Display all courses for which Professor Berndt has been qualified:

Query:
SELECT Course.CourseID, CourseName

FROM Faculty, Course, Qualified

WHERE Faculty.FacultyName = ‘Berndt’

AND Faculty.FacultyID= Qualified.FacultyID

AND Course.CourseID=Qualified.CourseID;

[image: image2.png]Professor
Berndt

Al Faculty
Qualifications

Show
CourselD, CourseName
For Professor Berndt's
Qualified Courses

c. Display the class roster, including student name, for all students enrolled in section 2714 of ISM 4212:

Query:
SELECT Student.StudentID, StudentName,

Section.CourseID, Registration.SectionNo, Semester

FROM Student, Registration, Section

WHERE Section.SectionNo= Registration.SectionNo

AND Student.StudentID= Registration.StudentID

AND Registration.SectionNo=2714

ORDER BY StudentName;

[image: image3.png]Allregistrations for
SectionNo=2714

Course ISM 4212
Students in SectionNo 2714

Show
StudentiD, StudentName
For students registered
in SectionNo=2714 (in
data s shown for course
1SM 4212)

2. Which instructors are qualified to teach ISM 3113?

Query:
SELECT Faculty.FacultyName

FROM Faculty, Qualified

WHERE Qualified.FacultyID=Faculty. FacultyID

AND Qualified.CourseID=‘ISM 3113’;

[image: image4.png]Al Al

Faculty Faculty
Qualifications|

Show Faculty Names
For faculty qualified for
Course ISM 3113

3.
Is any instructor qualified to teach ISM 3113 and not qualified to teach ISM 4930?

Query:
SELECT Faculty.FacultyID, Faculty.FacultyName

FROM Faculty, Qualified

WHERE Qualified.FacultyID=Faculty.FacultyID

AND Qualified.CourseID=‘ISM 3113’

MINUS

SELECT Faculty.FacultyID, Faculty.FacultyName

FROM Faculty, Qualified

WHERE Qualified.FacultyID=Faculty.FacultyID

AND Qualified.CourseID=‘ISM 4930’

[image: image5.png]Step 1 Find Faculty Step 2 Find Faculty
Qualified for Qualified for
1SM 3113 1SM 4930

Use SQL set operation MINUS
To show only those Faculty
Qualified for ISM 3113 that ARE NOT
Qualified (or contained in ISM 4930
Qualifications) for ISM 4930

4.

a.
How many students are enrolled in section 2714 during semester I-2008?

Query:
SELECT COUNT (DISTINCT (StudentID))

FROM Registration

WHERE SectionID = 2714

AND Semester = ‘I-2008’;

[image: image6.png]All StudentiDs
For Registrations

Count distinct
StudentiDs
For these instances

SectionlD
2714,
Semester
2008

b. How many students are enrolled in ISM 3113 during semester I-2008?

Query:
SELECT COUNT (DISTINCT (StudentID))

FROM Section, Registration

WHERE Section.SectionNo = Registration.SectionNo

AND CourseID = ‘ISM 3113’

AND Semester = ‘I-2008’;

[image: image7.png]

5.
Which students were not enrolled in any courses during semester I-2008?

Query:
SELECT DISTINCT StudentID, Student_NAME

FROM Student

WHERE NOT EXISTS

(SELECT * FROM Registration

WHERE Student.StudentID =

 Registration.StudentID

 AND Semester= ‘I-2008’);

[image: image8.png]Al Students

Students
Registered
For Semester

1-2008

Show

Unique student
Instances (ID, Name)
For those students NOT
Registered for courses

Note to Instructor: Problems and Exercises 6–14 are based on Figure 17 and continue a problem set from Chapter 6 (problems 10–15, based on Figure 12). Please note that the Chapter 7 problem set alters the design of the database from the earlier design shown in Chapter 6. It may be useful for students to build this small database in a particular DBMS environment and populate the tables with sample data as they work on the requested queries. The SQL illustrated in this sample solution is based on MS Access SQL.

6.
List primary and foreign keys for all entities in Figure 17:

Tutor

Primary key: TutorID

Foreign key: none

Student

Primary key: StudentID

Foreign key: none

MatchHistory

Primary key: MatchID

Foreign keys: TutorID references Tutor(TutorID)

StudentID references Student(StudentID)

TutorReport

Primary key: MatchID + Month (composite PK)

Foreign key: MatchID references MatchHistory(MatchID)

7.
Write SQL to add MathScore to Student table:

SQL:

ALTER TABLE Student

ADD COLUMN MathScore NUMBER(2,1);

8.
Write SQL to add Subject to Tutor table:

SQL:

ALTER TABLE Tutor

ADD COLUMN Subject VARCHAR(7)

CHECK (Subject IN (‘Reading’, ‘Math’, ‘ESL’));

9.
Suggested solution for tutors who tutor in more than one subject area:
One approach is to adjust the database design to allow tutors the ability to declare more than one subject preference for tutoring. Based on the prior specifications (including Problem and Exercise 8), the business rule appeared to be that tutors only tutored in one subject, thus the subject could be stored with tutor information. Under this new requirement, the database needs the ability to track more than one subject per tutor. This can be accomplished by adding two tables to the current design (TutorSubject, Subject) and by altering the structure of the MatchHistory table to track the Subject involved in each match of Tutor and Student, as noted in the revised ERD.

It is also possible to assume that (1) each tutor is certified only once or (2) that a tutor must be certified in each of the subjects. Assumption 2 would require that CertDate be moved to the TutorSubject relation. This is a good opportunity to show how making an assumption without interviewing the database user may result in an incorrect data model because the correct business rule has not been uncovered.

After completing Exercise 8 (where subject values of “Reading, Math, and ESL” were added to teachers’ certifications), some students may ask if it is important for the database to track what Subject each Student is studying. This inquiry can be used in class as an example of how an analyst can uncover additional business rules that have not been initially elicited from the client in interviews. You may expand this question to track student assessment scores for math and ESL in addition to the existing READ score. This should lead to consideration that, just as tutors may only be certified in one area, students may elect to study in one to three areas, depending on their needs. The data model would need to be expanded further to handle this.

[image: image9.png]TutorlD Tutor Subject

SubjeetlD

e SubjectName
Student March Histor Tutor Report

Swienld Ly oefuiAicil b [0S s

Read StartDate Month

MathScore

StudentlD

10.
Tutors who have not submitted a report in July
(Answer provided in MS ACCESS SQL). Students who build a practice database to answer this problem should use a DATE format and may need to add a day-of-month value to the data provided. Note that a left outer join is necessary to pick up tutors who have never submitted a report.

First, a query named CH7P10 returns a list of all reports ever submitted for each currently active student. The query is sorted by tutor and report dates for that tutor.

SELECT MatchHistory.MatchID, MatchHistory.EndDate,

MatchHistory.TutorID, TutorReport.Month

FROM MatchHistory LEFT JOIN TutorReport ON

MatchHistory.MatchID = TutorReport.MatchID

WHERE (((MatchHistory.EndDate) IS NULL)) OR (((MatchHistory.EndDate)>#6/30/2008#) AND ((TutorReport.Month) Is Null))

ORDER BY MatchHistory.MatchID, TutorReport.Month;

Next, a query is built to retrieve data from query Ch7P10. This second query returns just those tutors with active students who have not turned in a July report.

Students should be encouraged to modify or add records to the example in the book in order to test their query thoroughly. As given, only Tutor 104 with a new student who started in June has not submitted a report for July. In order to test their query more completely, data should be created for tutors who have active students and who have previously submitted monthly reports but have not submitted one in June.

SELECT CH7P10.TutorID, CH7P10.Month

FROM CH7P10

WHERE (((CH7P10.Month) IS NULL)) OR

 (((CH7P10.Month)>=#6/30/2008# And

(CH7P10.Month) NOT BETWEEN #7/1/2008# And #7/31/2008#));

Motivated students may add parameters to this query so it will work for any month.

11.
Note: This solution assumes the creation of a PERSON table to store the common contact data for STUDENTs and TUTORs, and the linking of the STUDENT and TUTOR table to the PERSON table. Individual student answers may vary from this proposed solution due to this assumption.

CREATE TABLE PERSON (

PersonID

Varchar(5)

Constraint PERPERSID_PK PRIMARY KEY,

LastName

Varchar(15),

FirstName

Varchar(15),

MiddleInit

Varchar(1),

PersonStrAddress
Varchar(20),

PersonCity

Varchar(20),

PersonState

Char(2),

PersonZip

Varchar(10),

PersonPhone

Varchar(14),

PersonEMail

Varchar(25),

PersonType

Char(1));

ALTER TABLE Student (

ADD COLUMN PersonID VARCHAR(5));

ALTER TABLE Student (

ADD CONSTRAINT STPERSONID_FK

PersonID REFERENCES Person(PersonID));

ALTER TABLE Tutor (

ADD COLUMN PersonID VARCHAR(5));

ALTER TABLE Tutor (

ADD CONSTRAINT TTUTORID_FK

REFERENCES Person(PersonID));

12.
List all active students in June by name, including number of hours tutored and number of lessons completed:

Query:
SELECT Student.StudentID, MatchHistory.EndDate, Person.LastName, SUM(TutorReport.Hours) AS [Total Hours], SUM(TutorReport.Lessons) AS [Total Lessons]

FROM (Person INNER JOIN Student ON Person.PersonID = Student.StudentID) INNER JOIN (MatchHistory LEFT JOIN TutorReport ON MatchHistory.MatchID = TutorReport.MatchID) ON Student.StudentID = MatchHistory.StudentID

GROUP BY Student.StudentID, MatchHistory.EndDate, Person.LastName

HAVING (((MatchHistory.EndDate) Is Null));

13.
Which tutors, by name, are available to tutor?
This answer assumes any active tutor may be available to accept a new student:

Query:
SELECT Person.LastName, Person.FirstName, Tutor.Status

FROM Person INNER JOIN Tutor ON

Person.PersonID = Tutor.PersonID

WHERE (((Tutor.Status)=“Active”));

This answer assumes a tutor is available only if currently unassigned a student:

SELECT T.TutorID, Person.LastName, Person.FirstName

FROM Person INNER JOIN Tutor AS T

ON Person.PersonID = T.PersonID

WHERE (((T.TutorID) IN

(SELECT MH.TutorID FROM MatchHistory MH

WHERE EndDate IS NOT NULL) And

(T.TutorID) NOT IN

(SELECT MH.TutorID FROM MatchHistory MH

WHERE EndDate IS NULL))

AND ((T.STATUS)=‘Active’));

14.
Which tutor needs to be reminded to turn in reports?

Query:
SELECT MatchHistory.TutorID
FROM MatchHistory
WHERE MatchHistory.MatchID NOT IN

(SELECT DISTINCT TutorReport.MatchID

FROM TutorReport);

[image: image10.png]Step 1- Subquery to find Distinct
MatchiDs

All Tutor
Reports
Unigue All Matched
iatehlDs, Tutors and
Students

Step2- get only
those missing reports

(WHERE MatchID NOT
in current set of Tutor
Reports)

Show TutorID for those instances

Note to Instructor: Problems and Exercises 15–44 are based on the extended version of the Pine Valley Furniture Company database (BigPVFC.mdb is the MS Access file version of this database; this extended database version is also available on Teradata student resources). Please note that this version of the database has a different structure than that in the textbook version of the database (e.g., the salesperson information is in the extended version but not in the textbook version). Some of the field names may also have changed due to the version of the database you are using due to the reserved words of the DBMS. When you first use the database, check the table definitions to see what the exact field names and table structures are for the DBMS that you are using. Also note that, where possible, solutions are presented in both MS Access and Oracle SQL syntax.

15.
Find customers who have not placed any orders:

Microsoft Access Query:
SELECT Customer_T.CustomerID

FROM Customer_T

WHERE (((Customer_T.CustomerID)

NOT IN (SELECT CustomerID from Order_T)));

Oracle Query:
SELECT Customer_T.CustomerID

FROM Customer_T

WHERE Customer_T.CustomerID

NOT IN (SELECT CustomerID from Order_T);

16.
List the names and number of employees supervised (label this value HeadCount) for all the supervisors who supervise more than two employees:

Query:
 SELECT S.EmployeeName, COUNT(E.EmployeeID) AS HeadCount

 FROM Employee_T S, Employee_T E

 WHERE S.EmployeeID = E.Employee_Supervisor

 GROUP BY S.EmployeeName

 HAVING HeadCount > 2;

Result:

	EmployeeName
	HeadCount

	Robert Lewis
	3

You can verify this by running a simpler query that computes the number of employees each employee supervises. From this query you would see that there are three supervisors (those who supervise anyone), and the other two supervisors supervise only one employee each.

17.
Names of employees, employee birthdate, manager name, manager’s birthdate for those employees born before their manager was born; label columns per problem instructions:

SELECT E1.EmployeeName, E1.EmployeeBirthdate,
E2.EmployeeName AS Manager,

E2.EmployeeBirthdate AS ManagerBirth

FROM Employee_T E1, Employee_T E2

WHERE E1.EmployeeSupervisor = E2.EmployeeID

AND E1.EmployeeBirthdate < E2.EmployeeBirthdate;

P&E 17 Instance Diagram (with sample data for illustration purposes only; not showing values from PVFC database)
[image: image11.png]EMPLOYEE (E1)

EmployeelD | EinployecName | EmployecBlrthdate | EmployeeSupervisor
1234 John Smith 1/01/1950 890

2345 Sally Jones 2/02/1980 4567

3456 Sue Smith B

567 “Tom Cruise

5678 Suzy Queue 4567

6789 “Tim Thumb. 4567

7850 Dan Dawkins

ELEmployeeSupervisor =
E2.EmployeelD

Fmployectd mplojecbirthdate | EmployeeSupervisor
1231 b1/01f1950 7890
2515 2 /0271950 567
3456 1/15]1960 7690
[om Cruise | D2/15/ 1961
Suzy Queue | D3/15/1987 567
“Tim Thumb /051975 567
7590 Dan Dawkins 95

E1EmployeeBirthdate <

E2.EmployeeBirthdate

18.
Display order number, customer number, order date and items ordered for some customer (example shows CustomerID=4, students may have chosen another valid customer ID number in their solutions):
Microsoft Access Query:
SELECT Order_T.OrderID, Order_T.CustomerID,

Order_T.OrderDate, OrderLine_T.ProductID,

Product_T.ProductDescription,

OrderLine_T.OrderedQuantity

FROM (Product_T INNER JOIN Order_T ON Product_T.ProductID =

Order_T.ProductID) INNER JOIN OrderLine_T ON

Order_T.OrderID = OrderLine_T.OrderID

WHERE (((Order_T.CustomerID)= 4));

Oracle Query:
SELECT Order_T.OrderID, Order_T.CustomerID,

Order_T.OrderDate,OrderLine_T.ProductID,

Product_T.ProductDescription,

OrderLine_T.OrderedQuantity

FROM OrderLine_T, Order_T, Product_T

WHERE Order_T.OrderID=OrderLine_T.OrderID AND

OrderLine_T.ProductID=Product_T.ProductID AND

Order_T.CustomerID = 4;

19.
Display each item ordered for order #1, its standard price, and total price for each item ordered:

Microsoft Access Query:
SELECT OrderLine_T.ProductID,

Product_T.ProductStandardPrice,

Sum(OrderLine_T.OrderedQuantity)* Product_T.ProductStandardPrice AS Total

FROM Product_T INNER JOIN OrderLine_T ON

Product_T.ProductID = OrderLine_T.ProductID

GROUP BY OrderLine_T.ProductID, Product_T.StandardPrice,

OrderLine_T.OrderID

HAVING (((OrderLine_T.OrderID)= 1));

Oracle Query:
SELECT OrderLine_T.ProductID,

Product_T.ProductStandardPrice,

Sum(OrderLine_T.OrderedQuantity)*

Product_T.ProductStandardPrice

AS TotalPrice

FROM Product_T,OrderLine_T

WHERE Product_T.ProductID = OrderLine_T.ProductID

GROUP BY OrderLine_T.ProductID,

 Product_T.ProductStandardPrice, OrderLine_T.OrderID

HAVING OrderLine_T.OrderID=1;

20.
Total the cost of the order for order #1:
This solution uses the results of Question 19, saved as a query or view named order_1:
Both MS-Access and Oracle are the same.

Query:

SELECT SUM(order_1.TotalPrice) as TotalCost

FROM order_1;

21.
Calculate the total raw material cost (label TotCost) for each product compared to its standard product price and display product ID, product description, standard price, and the total cost in the result:

Query:

SELECT P.ProductID, ProductDescription,

P.ProductStandardPrice,

SUM(GoesIntoQuantity*R.ProductStandardPrice)as TotCost

FROM Product_T as P, Uses as U, RawMaterial_T as R

WHERE P.ProductID = U.ProductID

AND U.MaterialID = R.MaterialID

GROUP BY P.ProductID, ProductDescription,

 P.ProductStandardPrice;

Or here is another interesting approach using a derived table in the SELECT list:

SELECT Product_T.ProductID, Product_Description,

 Product_T.ProductStandardPrice, TotCost

 FROM Product_T, (SELECT ProductID,

SUM(ProductStandardPrice*GoesIntoQuantity) as TotCost

FROM Uses, RawMaterial_T

 WHERE Uses.MaterialID = RawMaterial_T.MaterialID

 GROUP BY ProductID) as Cost_T

 WHERE Product_T.ProductID = Cost_T.ProductID;

22.
For every order that has been received, display the order ID, the total dollar amount owed on that order (you’ll have to calculate this total from attributes in one or more tables; label this result Total_Due), and the amount received in payments on that order (assume there is only one payment made on each order). To make this query a little simpler, you don’t have to include those orders for which no payment has yet been received. List the results in decreasing order by the difference between total due and amount paid:

Query:
Just to help to verify the result, the following shows all 11 rows of the payment table, and as assumed, there is only one payment per order, but not all orders have payments. Note: Dates in this database sometimes change between editions of the associated textbook, so your results may vary in terms of dates:

	PayID
	OrderID
	DateC
	TypeC
	Amount
	CommentC

	2
	24
	2004-03-10
	D
	25
	cash

	5
	32
	2004-03-11
	D
	3000
	Cashiers Check

	7
	39
	2004-03-11
	D
	600
	chk 1003

	4
	28
	2004-03-10
	D
	25
	cash

	1
	1
	2004-03-01
	D
	1000
	chk101

	9
	51
	2004-03-11
	D
	150
	cash

	11
	69
	2004-03-11
	D
	200
	chk3001

	10
	54
	2004-03-11
	D
	2650
	Check # 343

	3
	26
	2004-03-10
	D
	222
	cash

	6
	34
	2004-03-11
	D
	575
	Chk1201

	8
	48
	2004-03-11
	D
	1000
	chk2301

Now the query:

SELECT OrderLine_T.OrderID,

 SUM(OrderedQuantity*ProductStandardPrice) AS

TotalDue, Amount

FROM OrderLine_T, Product_T, Payment_T

WHERE OrderLine_T.ProductID = Product_T.ProductID

 and OrderLine_T.OrderID = Payment_T.OrderID

GROUP BY OrderLine_T.OrderID, Amount

ORDER BY TotalDue - Amount DESC;

23.
List each customer who has bought computer desks and the number of units bought by each customer:

The first solution is a better approach to this request as it will retrieve a result set of computer desks, whether or not the material and description of said desk is “oak” as is currently shown in the PVFC dataset. The second solution is an alternative approach that relies upon the only computer desk description found in the current PVFC dataset.
Query:
SELECT Customer_T.CustomerID, CustomerName,

SUM(OrderedQuantity) as UnitsBought

FROM OrderLine_T,Order_T,Product_T,Customer_T

WHERE ProductDescription LIKE '%Computer Desk%'

AND Order_T.OrderID = OrderLine_T.OrderID

AND Product_T.ProductId = OrderLine_T.ProductID

AND Customer_T.CustomerID = Order_T.CustomerID

GROUP BY Customer_T.CustomerID, CustomerName;
Alternate Query:

SELECT Customer_T.CustomerID, CustomerName,

SUM(OrderedQuantity) as UnitsBought

FROM OrderLine_T,Order_T,Product_T,Customer_T

WHERE ProductDescription = 'Oak Computer Desk'

AND Order_T.OrderID = OrderLine_T.OrderID

AND Product_T.ProductId = OrderLine_T.ProductID

AND Customer_T.CustomerID = Order_T.CustomerID

GROUP BY Customer_T.CustomerID, CustomerName;

24.
List in alphabetical order the names of all employees (managers) who are now managing people with skill ID BS12. List each such manager’s name only once, even if that manager manages several people with this skill:
Query:
SELECT DISTINCT M.EmployeeName

FROM Employee_T AS M, Employee_T AS E,
EmployeeSkills_T AS ES

WHERE SkillID = ‘BS12’
 and ES.EmployeeID = E.EmployeeID
 and E.EmployeeSupervisor = M.EmployeeID
 ORDER BY 1;

25.
Display the salesperson name, product finish, and total quantity sold (label as TotSales) for each finish by each salesperson:
Query:
SELECT DISTINCT SalespersonName, ProductFinish, SUM(OrderedQuantity) AS TotSales

 FROM Salesperson_T, OrderLine_T, Product_T, Order_T

 WHERE Salesperson_T.SalespersonID = Order_T.SalespersonID

 AND Order_T.OrderID = OrderLine_T.OrderID

 AND OrderLine_T.ProductID = Product_T.ProductID

 GROUP BY SalespersonName, ProductFinish;

26.
Write a query to list the number of products produced in each work center (label this result ‘TotalProducts’). If a work center does not produce any products, display the result with a total of 0:
Query:

SELECT WorkCenter.WorkCenterID, COUNT(ProductID) as TotalProducts

 FROM WorkCenter LEFT OUTER JOIN ProducedIn_T

 ON WorkCenter.WorkCenterID = ProducedIn_T.WorkCenterID

 GROUP BY WorkCenter.WorkCenterID;

27.
Develop a list of all the PVFC customers by name with the number of vendors in the same state as that customer (label this computed result NumVendors):

Query:

SELECT CustomerName, COUNT(VendorID) AS NumVendors

 FROM Customer_T C LEFT OUTER JOIN Vendor_T V

 ON C.Customer_State = V.Vendor_State

 GROUP BY CustomerName;

28.
OrderIDs for customers lacking payment:

Query:

SELECT OrderID

FROM Order_T

MINUS

SELECT OrderID

FROM Payment_T;

29.
Names of states where customers reside, but have no salesperson residing in that state:

First, a query solution using MINUS operator:

SELECT CustomerState

FROM Customer_T

MINUS

SELECT SalesPersonState

FROM Salesperson_T;

Next, a solution using OUTER JOIN operation:

SELECT DISTINCT CustomerState

FROM Customer_T

LEFT OUTER JOIN Salesperson_T
ON CustomerState = SalespersonState

WHERE Salesperson_T.SalespersonState IS NULL

ORDER BY Customer_T.CustomerState;

Student answers will vary as to which approach is chosen as the “most natural”, especially based on their experiences or level of comfort with mathematical set manipulations.

30.
Produce a list of all the products (show product description) and the number of times each product has been ordered:

This query requires an outer join because some products may not have been ordered. Because many SQL systems do not have an outer join operator, often this type of query must use the UNION command. The following answer uses this second approach because it will work with almost any system. Also, note that the question wants the number of times a product has been ordered, not the total quantity ordered:

Microsoft Access Query:
SELECT Product_T.ProductID, ProductDescription,

COUNT(*) as TimesOrdered

FROM Product_T INNER JOIN OrderLine_T ON

Product_T.ProductID =

OrderLine_T.ProductID

GROUP BY Product_T.ProductID, ProductDescription

UNION

SELECT ProductID, ProductDescription, 0

FROM Product_T

WHERE (EXISTS

(SELECT * FROM OrderLine_T

WHERE (OrderLine_T.ProductID =

Product_T.ProductID))=FALSE);
Oracle Query:
SELECT Product_T.ProductID, ProductDescription,

COUNT(*) as TimesOrdered

FROM Product_T,OrderLine_T

WHERE Product_T.ProductID =

OrderLine_T.ProductID

GROUP BY Product_T.ProductID, ProductDescription

UNION

SELECT ProductID, ProductDescription, 0

FROM Product_T

WHERE NOT EXISTS

(SELECT * FROM OrderLine_T

WHERE OrderLine_T.ProductID =

Product_T.ProductID);

[image: image12.png]OR
All ProductiDs Al ProductiDs
In OrderLine(s) From Product

N Not found in

OrderLine(s)

—

(all ecords returned
From both sets of data)

Show Product information
For all products and number of
Times each product has been ordered

31.
Display the customer ID, name, and order ID for all customer orders. For those customers who do not have any orders, include them in the display once:
Query:
SELECT c.CustomerID, CustomerName, ZEROIFNULL(OrderID)

 FROM Customer_T c LEFT OUTER JOIN Order_T o

 ON c.CustomerID = o.CustomerID;

OR

SELECT CUST.CustomerID, CustomerName, OrderID

FROM Customer_T CUST

 LEFT OUTER JOIN Order_T ORD

 ON CUST.CustomerID = ORD.CustomerID

ORDER BY CUST.CustomerID;

32.
Display the Employee ID and Employee Name for those employees who do not possess the skill Router. Display the results in order by EmployeeName:

Query:

SELECT EmployeeID, EmployeeName FROM Employee_T

 WHERE EmployeeID NOT IN

 (SELECT ES.EmployeeID FROM EmployeeSkills_T AS ES,

Skill_T as S

 WHERE Skill_Description = ‘Router’

 and ES.SkillID = S.SkillID)

 ORDER BY EmployeeName;

[image: image13.png]

33.
Name of customer 16, and other customers in same zipcode
Query:

SELECT C1.CustomerName, C2.CustomerName, C1.PostalCode

FROM Customer_T C1, Customer_T C2

WHERE C1.CustomerID = 16

AND C1.PostalCode = C2.PostalCode

AND C2.CustomerID != 16;

34.
P&E 33, re-written for all customers
Query:

SELECT C1.CustomerName, C2.CustomerName AS CName2,
C1.PostalCode

FROM Customer_T C1, Customer_T C2

WHERE C1.PostalCode = C2.PostalCode

AND C2.CustomerID != C1.CustomerID;

35.
Display the customer ID, name, and order ID for all customer orders. For those customers who do not have any orders, include them in the display once, with a 0 value for OrderID:

Query:

SELECT Customer_T.CustomerID, CustomerName, OrderID

FROM Customer_T, Order_T

WHERE Customer_T.CustomerID = Order_T.CustomerID

UNION

SELECT CustomerID, CustomerName, 0

FROM Customer_T

WHERE NOT EXISTS

 (SELECT * FROM Order_T

 WHERE Order_T.CustomerID = Customer_T.CustomerID);

Or replace last three lines above with:

WHERE CustomerID NOT IN (SELECT CustomerID FROM Order_T);

36.
Show the customer ID and name for all the customers who have ordered both products with IDs 3 and 4 on the same order:

Query:

SELECT C.CustomerID, CustomerName

 FROM Customer_T C, Order_T O1, OrderLine_T OL1

 WHERE C.CustomerID = O1.CustomerID

 and O1.OrderID = OL1.OrderID

 and OL1.ProductID = 3

 and O1.OrderID IN

 (SELECT OrderID from OrderLine_T OL2

 WHERE OL2.ProductID = 4);

Or here is another interesting approach using derived tables (color for some parentheses helps to show the nesting of SELECTs):

SELECT DISTINCT(CustomerID), CustomerName

 FROM Customer_T

 WHERE CustomerID IN

 (SELECT CustomerID

 FROM

(SELECT p3.OrderID

 FROM (SELECT OrderID FROM OrderLine_T where

ProductID = 3) as p3,

(SELECT OrderID from OrderLine_T where

ProductID = 4) as p4

WHERE p3.OrderID = p4.OrderID) as Orders, Order_T

 WHERE Orders.OrderID = Order_T.OrderID);

37.
Customer names of customers who have ordered (on same or different orders) both products 3 and 4:
Query:

SELECT C.CustomerID, CustomerName

 FROM Customer_T C, Order_T O1, OrderLine_T OL1

 WHERE C.CustomerID = O1.CustomerID

 and O1.OrderID = OL1.OrderID

 and OL1.ProductID = 3

INTERSECT

SELECT C.CustomerID, CustomerName

 FROM Customer_T C, Order_T O1, OrderLine_T OL1

 WHERE C.CustomerID = O1.CustomerID

 and O1.OrderID = OL1.OrderID

 and OL1.ProductID = 4;

38.
Review first query in Correlated Subqueries section in Chapter: This query will not yield the desired result when there are two or more products that have the same largest standard price. You would need to re-write the query to use the comparison >= operator.

39.
List the order number and order quantity for all customer orders for which the order quantity is greater than the average order quantity of that product: (Hint: This involves a correlated subquery.)

Microsoft Access Query:

SELECT Order11.OrderID, Order11.OrderedQuantity,

Order11.ProductID

FROM PRODUCT_T INNER JOIN OrderLine_T AS Order11 ON

PRODUCT_T.ProductID = Order11.ProductID

WHERE (((Order11.OrderedQuantity)>(

SELECT AVG(OrderedQuantity) FROM OrderLine_T x1

WHERE x1.ProductID = Order11.ProductID)) AND

 ((PRODUCT_T.ProductID)=[Order11].[ProductID]));

Oracle Query:

SELECT Order11.OrderID,

Order11.OrderedQuantity,Order11.ProductID

FROM Product_T,OrderLine_T Order11

WHERE Product_T.ProductID = Order11.ProductID

AND Order11.OrderedQuantity >

(SELECT AVG(OrderedQuantity) FROM OrderLine_T x1

WHERE x1.ProductID = Order11.ProductID);

40.
List the salesperson that has sold the most computer desks:

Microsoft Access Query:
It is easiest to create a subquery first. The first query we will call tsales:
SELECT Salesperson_T.SalespersonID,

Sum(OrderLine_T.OrderedQuantity) AS totsales

FROM ((OrderLine_T INNER JOIN Order_T ON

 OrderLine_T.OrderID =

Order_T.OrderID) INNER JOIN Product_T ON

OrderLine_T.ProductID = Product_T.ProductID)

INNER JOIN (Salesperson_T INNER JOIN

DoesBusinessIn_T ON Salesperson_T.TerritoryID =

DoesBusinessIn_T.TerritoryID) ON

Order_T.CustomerID = DoesBusinessIn_T.CustomerID

WHERE (((Order_T.OrderID)=[OrderLine_T].[OrderID]) AND

((OrderLine_T.ProductID)=[Product_T].[ProductID]) AND

((Product_T.ProductDescription)=‘Oak Computer Desk’) AND

((Order_T.CustomerID)=[DoesBusinessIn_T].[CustomerID])

 AND ((Salesperson_T.TerritoryID)=

[DoesBusinessIn_T].[TerritoryID]))

GROUP BY Salesperson_T.SalespersonID;

Next, find the SalesPersonID for the salesperson who had the highest sales:

SELECT SalespersonID

FROM tsales

WHERE totsales = (SELECT MAX(totsales) FROM tsales);

Oracle Query:
SELECT Salesperson_T.SalespersonID, SUM(OrderedQuantity)

AS totsales

FROM OrderLine_T,Order_T,Product_T,DoesBusinessIn_T,

Salesperson_T

WHERE Order_T.OrderID = OrderLine_T.OrderID

and OrderLine_T.ProductID = Product_T.ProductID

and ProductDescription = ‘Oak Computer Desk’

and Order_T.CustomerID = DoesBusinessIn_T.CustomerID

and Salesperson_T.TerritoryID =

DoesBusinessIn_T.TerritoryID

GROUP BY Salesperson_T.SalespersonID;

Save the result as tsales and run to find the salesperson with the most computer desk sales:

SELECT Salesperson_ID

FROM tsales

WHERE totsales = (SELECT MAX(totsales) FROM tsales);

41.
Display in product ID order the product ID and total amount ordered of that product by the customer who has bought the most of that product; use a derived table in a FROM clause to answer this query. Note that the result of this query is a subset (first and last columns) of the prior query result.

Query:
SELECT F1.ProductID, MAX(F1.ProdCustTotal) as TotOrdered

 FROM

(SELECT ProductID, CustomerID, SUM(OrderedQuantity)

AS ProdCustTotal

FROM Order_line_T as OL2, Order_T as O2

WHERE OL2.OrderID = O2.OrderID

GROUP BY ProductID, CustomerID) as F1

GROUP BY F1.ProductID

ORDER BY F1.ProductID;

Result:
	ProductID
	TotOrdered

	1
	9

	2
	26

	3
	12

	4
	4

	5
	10

	6
	4

	7
	4

	8
	2

	10
	9

	13
	2

	14
	10

	17
	5

	20
	1

42.
Employee information for all employees in each state who were hired before the most recently hired person in that state:

Query:
SELECT *

FROM Employee_T E1

WHERE EmployeeDateHired <

(SELECT MAX(EmployeeDateHired)

 FROM Employee_T E2

 WHERE E1.EmployeeState = E2.EmployeeState);

43.
Marketing Manager cross-selling analyses:
a. List the IDs for all the products that have sold in total more than 20 units across all orders:

Query for part a.:

SELECT X.ProductID from OrderLine_T X

 GROUP BY X.ProductID

 HAVING SUM(X.OrderedQuantity) > 20;

Result for part a.:

	ProductID

	2

	3

b. List all the IDs for the orders that include products that satisfy this first query along with the number of products on those orders (see result below for an example). Only orders with three or more products.

Query for part b.:

SELECT Y.OrderID, count(Y.ProductID) as NumProductsOnOrder

 FROM OrderLine_T Y

 WHERE Y.OrderID IN

 (SELECT T.OrderID FROM OrderLine_T T

 WHERE T.ProductID IN

 (SELECT X.ProductID FROM OrderLine_T X

 GROUP BY X.ProductID

 HAVING SUM(X.OrderedQuantity) > 20))

 GROUP BY Y.OrderID

 HAVING NumProductsOnOrder >= 3;

Result for part b.:
	OrderID
	NumProductsOnOrder

	2
	3

	4
	4

	1
	3

c. What are the (other) products sold on the orders in the Part b. result:

Query for part c.:
SELECT DISTINCT P.ProductID, P.ProductDescription

 FROM OrderLine_T as O, Product_T as P

 WHERE P.ProductID = O.ProductID

 and O.OrderID IN

(SELECT Y.OrderID

 FROM OrderLine_T Y

 WHERE Y.OrderID IN

(SELECT T.OrderID FROM OrderLine_T T

 WHERE T.ProductID IN

 (SELECT X.ProductID FROM OrderLine_T X

 GROUP BY X.ProductID

 HAVING SUM(X.OrderedQuantity) > 20))

 GROUP BY Y.OrderID

 HAVING COUNT(Y.ProductID) >= 3);

Result for part c.:

	ProductID
	ProductDescription

	2
	Birch coffee table

	3
	Oak computer desk

	4
	Entertainment center

	5
	Writer’s desk

	6
	8-Drawer dresser

	8
	48” bookcase

	10
	96” bookcase

	14
	Writer’s Desk

44.
For each product display in ascending order by product ID the product ID and description along with the customer ID and name for the customer who has bought the most of that product; also show the total quantity ordered by that customer (who has bought the most of that product). Use a correlated subquery:

Query:

SELECT P1.ProductID, ProductDescription, C1.CustomerID,

CustomerName,

 SUM(OL1.OrderedQuantity) as TotOrdered

FROM Customer_T as C1, Product_T as P1,

OrderLine_T as OL1, Order_T as O1

WHERE C1.CustomerID = O1.CustomerID

and O1.OrderID = OL1.OrderID

and OL1.ProductID = P1.Product_ID

GROUP BY P1.ProductID, ProductDescription,

C1.CustomerID, CustomerName

HAVING TotOrdered >= ALL

(SELECT SUM(OL2.OrderedQuantity)

 FROM OrderLine_T as OL2, Order_T as O2

 WHERE OL2.ProductID = P1.ProductID

 AND OL2.OrderID = O2.OrderID

 AND O2.CustomerID <> C1.CustomerID

 GROUP BY O2.CustomerID)

ORDER BY P1.ProductID;
Result:

	ProductID
	ProductDescription
	CustomerID
	CustomerName
	TotOrdered

	1
	Cherry end table
	4
	Eastern Furniture
	9

	2
	Birch Coffee table
	4
	Eastern Furniture
	26

	3
	Oak Computer desk
	3
	Home Furnishings
	12

	4
	Entertainment center
	16
	ABC Furniture Co.
	4

	5
	Writer’s desk
	15
	Janet’s Collection
	10

	6
	8-Drawer dresser
	4
	Eastern Furniture
	4

	7
	48” bookcase
	4
	Eastern Furniture
	4

	8
	48” bookcase
	3
	Home Furnishings
	2

	10
	96” bookcase
	4
	Eastern Furniture
	9

	13
	Nightstand
	13
	Ikards
	2

	14
	Writer’s desk
	15
	Janet’s Collection
	10

	17
	High back leather chair
	1
	Contemporary Casuals
	5

	20
	Amiore
	8
	Dunkins Furniture
	1

Suggestions for Field Exercises
1. This question is self-explanatory.

2. Three differences that you may want to help the students discover:

· Primary and foreign keys are specified with the CREATE TABLE or ALTER TABLE commands in SQL*PLUS. MS Access uses a graphical interface to create tables and to establish primary and foreign keys.

· MS Access SQL does not include the CREATE VIEW or DROP VIEW commands. Instead, the query that would be used as part of the CREATE VIEW syntax is saved as a query, which can be accessed later through new select statements by simply specifying the query name.

· MS Access has a keyword, DISTINCTROW, which is not found in other DBMS SQL implementations.

Five similarities between Oracle SQL and MS Access SQL:

· Both use the semicolon to mark the end of a statement and cause it to execute.

· Basic SQL syntax is very similar, using the keywords SELECT, FROM, WHERE, GROUP BY, ORDER BY, and HAVING in the same fashion.

· Both use brackets to specify the order of expression evaluation.

· Subqueries and correlated subqueries can be written in both.

· Both are insensitive to spacing and line breaks within a statement.

Project Case

Case Questions

1. The student will need to identify the capabilities of the DBMS.

2. DDL Triggers can be written to update an audit log whenever records are added, deleted or updated in any table. This audit log could contain the table name, fields affected, user, date, and time.

Case Exercises

1.
a.
Info from two tables: List all the details of all the visits of a patient:

Query:
SELECT Patient.Name, Visit.VisitDate, Visit.VisitTime,

Visit.VisitReason, Visit.NewSymptoms, Visit.PainLevel

FROM Patient INNER JOIN Visit

ON Patient.PatientNo = Visit.PatientNo

Where Patient.Name = “John Smith”;

b.
Query with subquery syntax: List all patients who reported pain that exceeded the average pain for all visits:

Query:

SELECT Patient.Name

FROM Patient INNER JOIN Visit ON

Patient.PatientNo = Visit.PatientNo

WHERE PainLevel > (SELECT avg(PainLevel) from Visit);

 c.
Result table to produce report: listing of patients assigned to specific social worker:

Query:
SELECT PatientName

FROM Patient

WHERE SocialWorker = “Jane Klein”;

2.
Students should be encouraged to add data and adjust the data model of their prototype database in order to improve it and to completely test the queries they are writing. Student answers will vary based on how their prototype is designed and implemented.

a.
For a given physician, which treatments has that physician performed on each patient who was referred by that physician to the hospital?

Query:

SELECT DISTINCT
Person_T.PersonFirstName,

Person_T.PersonLastName, TreatmentName

FROM Treatment_T, Performs_T, Patient_T,

Physician_T, Person_T

WHERE Performs_T.PatientID = Patient_T.PatientID

AND Performs_T.TreatmentID = Treatment_T.TreatmentID

AND Physician_T.PhysicianID = Performs_T.PhysicianID

AND Patient_T.PhysicianID = Physician_T.PhysicianID

AND Physician_T.PersonID = Person_T.PersonID;

b.
For query in part a., also include physicians who have not referred patients to the hospital:
Query:
SELECT DISTINCT
Person_T.PersonFirstName,

Person_T.PersonLastName,TreatmentName

FROM Treatment_T, Performs_T, Patient_T, Physician_T, Person_T

WHERE Performs_T.PatientID = Patient_T.PatientID AND

Performs_T.TreatmentID = Treatment_T.TreatmentID AND

Physician_T.PhysicianID = Performs_T.PhysicianID AND

Patient_T.PhysicianID = Physician_T.PhysicianID AND

Physician_T.PersonID = Person_T.PersonID

UNION

SELECT Person_T.PersonFirstName, Person_T.PersonLastName, ‘None’

FROM Person_T,Physician_T

WHERE Person_T.PersonID = Physician_T.PersonID AND

Physician_T.PhysicianID NOT IN

(SELECT PhysicianID FROM Patient_T);

c.
For each patient, what is the average number of treatments performed on him or her by each physician who has treated that patient?
This query could be a bit confusing to students. Make sure that you explain to students that they should find the total treatments done for each patient by physician. Once this is done, the next step is to compute an average of the total number of treatments done by all physicians for a patient. For example, if we had the following Performs_T table (here, I only show three fields):

	PatientID
	PhysicianID
	TreatmentID

	12
	321
	45

	12
	321
	56

	12
	421
	5

	12
	456
	23

	12
	456
	56

	13
	321
	32

	13
	342
	45

We would end up with a derived table (TreatCounts in the query following) as follows:

	PatientID
	PhysicianID
	TotalTreatments

	12
	321
	2

	12
	421
	1

	12
	456
	2

	13
	321
	1

	13
	342
	1

We would then calculate the average from the TreatCounts table as follows:

	PatientID
	Average Treatments

	12
	1.66

	13
	1

Query in Oracle:

SELECT Person_T.PersonLastName,

AVG(TreatCounts.TotalTreatments) AS AvgOfTotalTreatments

FROM Person_T, Patient_T,

 (SELECT Performs_T.PatientID, Performs_T.PhysicianID,

COUNT(*) AS TotalTreatments

FROM Performs_T

GROUP BY Performs_T.PatientID,Performs_T.PhysicianID)

 AS TreatCounts

WHERE Person_T.PersonID=Patient_T.PersonID AND

Patient_T.PatientID =TreatCounts.PatientID

GROUP BY Person_T.PersonLastName;

In Access, we could either use the Oracle query (shown previously) in SQL view or first create the TotalTreatments derived table as a query:

SELECT Performs_T.PatientID, Performs_T.PhysicianID,

COUNT(Performs_T.TreatmentID) AS CountOfTreatmentID

FROM Performs_T

GROUP BY Performs_T.PatientID, Performs_T.PhysicianID;

We can now use this query for our final query:

SELECT Person_T.PersonLastName,

AVG(TreatCounts.[Total Treatments]) AS [AvgOfTotalTreatments]

FROM (Person_T INNER JOIN Patient_T ON

Person_T.PersonID =
Patient_T.PersonID)

INNER JOIN TreatCounts ON

Patient_T.PatientID = TreatCounts.PatientID

GROUP BY Person_T.PersonLastName;

d.
List all patients who have received no treatments:

Oracle Query:

SELECT Person_T.PersonLastName,Person_T.PersonFirstName

FROM Person_T,Patient_T

WHERE Person_T.PersonID = Patient_T.PersonID

AND PatientID NOT IN (SELECT PatientID FROM Performs_T);

MS Access Query:

SELECT Person_T.PersonLastName, Person_T.PersonFirstName

FROM Person_T INNER JOIN

Patient_T ON Person_T.PersonID =
Patient_T.PersonID

WHERE PatientID NOT IN (SELECT PatientID FROM Performs_T)

e.
For each nurse-in-charge, what is the total number of hours worked by all employees who work in the care center that nurse supervises?

Oracle Query:

SELECT InCharge, SUM(HoursWorked)

FROM CareCenter_T,Assignment_T

WHERE CareCenter_T.CareCenterID = Assignment_T.CareCenterID

Group By InCharge;

MS Access Query:

SELECT CareCenter_T.InCharge, SUM(Assignment_T.Hours)

AS SUMOfHours

FROM CareCenter_T INNER JOIN Assignment_T ON

CareCenter_T.CareCenterID = Assignment_T.CareCenterID

GROUP BY CareCenter_T.InCharge;

f.
Which technicians have more than one skill? Which technicians have no skills listed?
Unless we create a separate table with skills or change the primary key of the Technician_T table, currently, each technician can have only one skill.

To find technicians with no skills, we would look for any technicians without a record in the Technician_T table:

Oracle Query:

SELECT Person_T.PersonLastName,Person_T.PersonFirstName

FROM Person_T,Employee_T

WHERE Person_T.PersonID = Employee_T.EmployeeID

AND EmployeeType = ‘Technician’

AND EmployeeID NOT IN

(SELECT TechnicianID FROM Technician_T);

MS Access Query:

SELECT Person_T.PersonLastName, Person_T.PersonFirstName

FROM Person_T INNER JOIN Employee_T ON

Person_T.PersonID =
Employee_T.EmployeeID

WHERE EmployeeType = ‘Technician’ AND

EmployeeID NOT IN (SELECT TechnicianID FROM Technician_T)

g.
Determine whether any outpatients were accidentally assigned to resident beds:

Oracle Query:

SELECT COUNT(*) FROM Patient_T

WHERE AdmissionType = ‘Outpatient’ AND BedID IS NOT NULL;

MS Access Query:

SELECT COUNT(Patient_T.PatientID) AS CountOfPatientID

FROM Patient_T

WHERE (((Patient_T.AdmissionType)=“Outpatient”) AND

((Patient_T.BedID) <> “ ”));

h.
Determine which item is consumed most:

Oracle Query:

SELECT Consumes_T.ItemID, COUNT(*)

FROM Consumes_T

GROUP BY Consumes_T.ItemID;

MS Access Query:

SELECT TOP 1 Consumed_T.ItemID, COUNT(*)

FROM Consumed_T

GROUP BY Consumed_T.ItemID;

i.
Determine which physicians prescribe the most expensive item:

In the MVCH database on the Teradata Web site, there is no table that links the physicians to items unless we assume that the admitting physician is the physician prescribing all items. In this case, we need to first determine the most expensive item, then use that result table in a subsequent query:

Oracle Query:

SELECT ItemID

FROM Item_T

WHERE ItemCost = (SELECT MAX(ItemCost) FROM Item_T);

We can use the previous query as a derived table (we will call it TopItem).

SELECT Person_T.Person_Last_Name,

Person_T.Person_First_Name

FROM (SELECT ItemID FROM Item_T WHERE

ItemCost = (SELECT MAX(ItemCost) FROM Item_T)),

TopItem, Person_T, Physician_T, Patient_T, Consumes_T

WHERE Person_T.PersonID = Physician_T.PersonID

and Physician_T.PhysicianID = Patient_T.PhysicianID

and Consumes_T.PatientID = Patient_T.PatientID

and Consumes_T.ItemID = TopItem.ItemID

MS Access Query:

We can create a query and call it TopItem:

SELECT TOP 1 ItemsID, ItemCost

FROM Item_T;

We can then use the query created above to determine physicians who prescribed the most expensive items.

SELECT Person_T.Person_Last_Name, Person_T.Person_First_Name

FROM TopItem INNER JOIN

((Person_T INNER JOIN Physician_T ON

Person_T.PersonID = Physician_T.PersonID)

INNER JOIN (Patient_T INNER JOIN

Consumed_T ON Patient_T.PatientID =

Consumed_T.PatientID) ON

Physician_T.PhysicianID =

Patient_T.PhysicianID) ON

TopItem.itemsID = Consumed_T.ItemID;

j.
Return a result table that could be used to produce a hospital report, such as nursing staff assigned to each care center:

Oracle Query:

SELECT CareCenter_T.CareCenterID,

Person_T.PersonFirstName, Person_T.PersonLastName

FROM Person_T,Employee_T,CareCenter_T,Nurse_T

WHERE CareCenter_T.CareCenterID = Nurse_T.CareCenterID

AND Employee_T.EmployeeID = Nurse_T.EmployeeID

AND Person_T.PersonID = Employee_T.EmployeeID;

MS Access Query:

SELECT CareCenter_T.CareCenterID,

Person_T.PersonFirstName, Person_T.PersonLastName

FROM Person_T INNER JOIN

(Employee_T INNER JOIN

(CareCenter_T INNER JOIN Nurse_T ON

CareCenter_T.CareCenterID = Nurse_T.CareCenterID) ON

Employee_T.EmployeeID = Nurse_T.EmployeeID) ON

Person_T.PersonID = Employee_T.EmployeeID;

k.
Use the UNION statement to provide a combined listing of care center names and their locations as well as laboratories and their location. This list should be sorted by location in ascending order. (You should use aliases to rename the fields in this query.):
Query:

SELECT CareCenterName AS Name, CareCenterLocation AS Location

FROM CareCenter_T

UNION ALL

SELECT LaboratoryID AS Name, LaboratoryLocation AS Location

FROM Laboratory_T;

Note: The ORDER BY clause cannot be used with a literal field.

Project Assignments

P1.
Write queries for the five reports identified in Chapter “Physical Database Design and Performance.”
a.
Nurses assigned to each care center:

Query:

SELECT CC.CCUnitName, N.NurseID

FROM CCAssignment_T CCA, Nurse_T N, CareCenter_T CC

WHERE N.NurseID = CCA.NurseID AND

CC.CCUnitName = CCA.CCUnitName

Order by CC.CCUnitName;

b.
Five most common diagnoses:

Query:

SELECT TOP 5 Diagnosis_T.DiagnosisName,

COUNT(PhysicianDX_T.DiagnosisCode) AS

CountOfDXCode

FROM Diagnosis_T INNER JOIN PhysicianDX_T ON

Diagnosis_T.DiagnosisCode =

PhysicianDX_T.DiagnosisCode

GROUP BY Diagnosis_T.DiagnosisName;

c.
Items consumed by each patient:
Query:

SELECT PersonName, I.ItemNo, ItemDesc

FROM Person_T PER, Patient_T PAT, Item_T I, ItemConsumption_T IC

WHERE PAT.PatientID = PER.PersonID AND

PAT.PatientID = IC.PatientID AND

IC.ItemNo = I.ItemNo

ORDER BY PersonName;

d.
Number of items provided by vendors:

Query:

SELECT VendorName, COUNT(INV.VendorID)

AS NBRVENITEMS

FROM Vendor_T V, Inventory_T INV, Item_T I

WHERE V.VendorID = INV.VendorID AND

I.ItemNo = INV.ItemNo;

e.
Number of admissions per physician:

Query:

SELECT PersonName, COUNT(PAT.AdmitPhys) AS NBRADMITS

FROM Person_T P, Patient_T PAT, Physician_T DR

WHERE DR.PhysicianID = P.PersonID AND

PAT.AdmitPhys = DR.PhysicianID

ORDER BY PersonName

GROUP BY PersonName;

P2. Create one DDL trigger for the database:

If we were to add a quantity-on-hand column to item, then whenever a row would be added to consume, we would reduce the quantity on hand in item by that amount.

SQL:

CREATE OR REPLACE TRIGGER AdjustQOH

AFTER INSERT ON Consume_T

FOR EACH ROW

UPDATE Item_T

SET QOH = QOH - :New.Quantity

WHERE ItemNo = :New.ItemNo;

Copyright © 2013 Pearson Education, Inc. publishing as Prentice Hall
Copyright © 2013 Pearson Education, Inc. publishing as Prentice Hall

