562

Modern Database Management, Eleventh Edition
563

Chapter 14

Chapter 14 Using Relational Databases to Provide Object Persistence

Chapter Overview

Please note that the material for this chapter is based upon the Web version of Chapter 14, not the abbreviated version of Chapter 14 in the text.

The purpose of this chapter is to introduce the integration between object-oriented application development models and relational databases. This chapter presents background to understand the broader context of object-oriented thinking and how it is materializing in the current industry marketplace in relation to databases. The chapter presents the conceptual differences between object-oriented and relational approaches to modeling, general characteristics of different mechanisms to bridge the so-called “object-relational impedance mismatch,” and a comprehensive example of Hibernate (a widely-used object-relational mapping technology).

Chapter Errata

In the first printing of this textbook, a few mistakes were not discovered until after the textbook was printed. The “Errata” document on the textbook Web site chronicles all known issues that were discovered after printing. The list below indicates those specific to this chapter.

1. To support P & E 16 and 19, respectively, Figure 5 needs the following modifications:
· The class Course should have an additional attribute with the following specification: private float creditHours;

· The abstract class Person should have an additional attribute with the following specification: private String eMail;

Chapter Objectives

Specific student learning objectives are included in the beginning of the chapter. From an instructor’s point of view, the objectives of this chapter are to:

1. Provide background understanding for the “object-relational impedance mismatch” situation found in industry.

2. Explain the different approaches to providing persistence for objects using relational databases. Review decision criteria for selecting an approach for the business situation.

3. Provide a practical example of object-relational mapping with a widely-used object relational mapping technology (Hibernate) from a conceptual standpoint.

4. Introduce the Hibernate query language (HQL) and provide fundamental practice in developing HQL query statements.

Key Terms
	Accessor method
	N+1 selects problem
	Pooling of database connections

	Call-level application
	Object identity
	Separation of concerns

	Declarative mapping schema
	Object-relational impedance mismatch
	Serialization

	Entity class
	Object-relational mapping
	Transparent persistence

	Fetching strategy
	Persistence
	Value type

Classroom Ideas

1. Use Figure 1 to illustrate the difference in how an Address is represented in an object-oriented solution versus a relational solution.
2. Present the object-oriented concept of association and show the o-o code example of how these are implemented. Use Figure 2 to walk through the use of the accessor method.

3. Break the class up into small teams. Ask each small team to briefly research one of the options for providing persistence for objects: call-level application interfaces, SQL query mapping frameworks, and object-relational mapping frameworks. Ask students to find examples of these approaches being used in practice and to report back to the class as a whole with these examples and their research.

4. Complete Problems and Exercises 1 and 2, or 3 and 4, or 5 and 6 in a class session. Review answers together as a class.

Answers to Review Questions

1. Define each of the following key terms:

a. Object-relational impedance mismatch. The conceptual differences between the object-oriented approach to application design and the relational model for database design and implementation

b. Object-relational mapping. Defining structural relationships between object-oriented and relational representations of data, typically to enable the use of a relational database to provide persistence for objects

c. Persistence. An object’s capability to maintain its state between application execution sessions

d. Call-level application program interface. A mechanism that provides an application program with access to an external service, such as a database management system

e. Transparent persistence. A persistence solution that hides the underlying storage technology

f. JDBC. Java database connectivity; an industry standard call-level application program interface that enables Java programs to connect with SQL databases

g. MyBATIS. One of the best-known industry tools that provides linking of classes in an object-oriented solution to parameters and results of SQL queries; an example of an SQL Query Mapping Framework that provides object persistence with relational databases

h. Hibernate. A comprehensive object-relational mapping (ORM) framework that has the longest history of all ORM frameworks; this framework hides the relational data access methods from the object-oriented applications

i. N+1 selects problem. A performance problem caused by too many SELECT statements generated by an ORM framework

2. Compare and contrast the following terms:

a. Object identity; primary key value of a row in a database table. An object identity is the property of an object separating it from other objects based on its existence, not on the values of any of the attributes of the object. The primary key value of a row in a database table serves to provide the identity of row in the database table.

b. Entity class; value type. An entity class represents a real-world entity; a value type is a class specification for a value associated with entity instances.

c. OODBMS; RDBMS. OODBMS stands for an object-oriented database management system and provides direct, transparent persistence for objects in o-o applications. RDBMS stands for relational database management systems that store data according to relational theory and does not provide direct, transparent persistence for objects in o-o applications.

d. Many-to-one association; one-to-many association. These are both common binary relationships between entities/classes in the relational and o-o design worlds. In the use of ORM, these are mapped differently based on the side from which one is observing the association.

e. Lazy loading; eager loading. Both of these are fetching strategies for an ORM framework’s retrieval of persistent objects to run-time memory during navigation processes. A lazy loading strategy retrieves objects from the database only when needed (Hibernate’s default). An eager loading strategy retrieves all associated objects from the database when the object to which they are linked is retrieved.
f. JPA; Hibernate. JPA is the Java Persistence API, which is part of the Enterprise Java Bean 3.0 standard. JPA is a subset of Hibernate, which is the de facto industry standard for ORM frameworks.
3. Reasons why OODBMS did not become popular:

A large reason is organizational inertia, influenced by several factors:

· Investment in relational database management systems. The amount of money spent since the 1980s for RDBMS is not trivial. Moving to a new DBMS is more difficult (and likely more costly) than moving to a new application development environment.

· Weak query capabilities in OODBMS. The query features of OODBMS did not live up to the query features available in RDBMS.

· OODBMS developers were small market players. Smaller market players did not have the financial backing to convince user organizations of the scalability and reliability of OODBMS versus RDBMS. User organizations did not find the OODBMS benefits to outweigh the costs of conversion.

4. Factors contributing to the object-relational impedance mismatch (refer to Table 1 and text discussion):

· nature and granularity of data types

· structural relationships (inheritance structures, representation of associations)

· defining the identity of objects/entity instances

· methods of accessing persistent data

· focus on data (relational databases) versus integrated data and behavior (the o-o approach)

· architectural styles

· support for managing transactions

5. How do the object-oriented and relational approaches to accessing data differ?

In the o-o world, a typical way to access a data item is to call the accessor method associated with a specific attribute. The navigation to the specific attribute is often accessed through a public accessor method within another object due to encapsulation of the attribute. In practice, the o-o programming language will use some way to iterate over a collection of objects to retrieve the data. In a relational database, a data item is accessed via queries; often, this means that the entire set of values can be specified in advance and retrieved at the same time.

6. Specify the key difference in how entity instance identities are defined in the o-o and relational worlds.

In the relational world, every row in a relational table has a unique primary key value that determines the identity of the row. In the o-o world, each object has its own identity based on its existence (fundamentally, location in memory) and is not dependent on the values of any of the attributes of the object.

7. Relational databases effective use for object persistence in o-o ?

The o-o paradigm has reached dominance in the application development marketplace. At the same time, tools that provide long-term persistence for organizational data are typically relational databases. Thus, the common organizational usage of relational databases must work with the newly developed o-o applications in order for organizational information systems to meet the needs of the organization.

8. Disadvantages of JDBC or some other call-level application program interface?

Call-level application program interfaces, such as JDBC, have the advantages of low overhead and the highest level of control over the database connection. However, call-level APIs have significant weaknesses as a solution: they expose the database structure to application developers; require that the developers understand the underlying database and SQL; create a lot of code that cannot usually be re-used and is hard to maintain; and they violate the idea of separation of concerns (e.g., persistence). Also, the use of call-level APIs is very labor-intensive that is prone to errors, especially in large applications.

9. MyBATIS vs. Hibernate?
MyBATIS is an example of an SQL Query Mapping Framework tool. Tools such as MyBATIS do not create a conceptual connection between classes (in o-o world) and tables (in relational database). Hibernate is an example of an Object Relational Mapping (ORM) Framework tool. Tools such as Hibernate permit the conceptual mapping of classes and associations in the o-o world to the tables and relationships in the relational database, and this mapping generally occurs only once.

10. Criteria to select between MyBATIS and Hibernate?
SQL query mapping frameworks such as MyBATIS are particularly strong solutions when there is a complex, potentially nonstandard existing structure and the task requires the execution of sophisticated queries resulting in a large number of rows. Object-relational mapping framework tools such as Hibernate are strong solutions when you have an opportunity to create a new database schema to provide persistence to your objects and the required database operations are not hugely complex. Thus, two criteria for deciding between the use of MyBATIS or Hibernate might be (1) how complex are the required query/database operations; and (2) is the database structure/schema new or old (legacy).

11. Applications and transparent persistence?

Persistence is an object’s capability to maintain its state between application execution sessions. Transparent persistence is a persistence solution that hides the underlying storage technology from the object-oriented applications. Thus, for an o-o application, transparent persistence enables the application code to be simpler, and not as tied to the underlying database technology. From an application development perspective, a developer who is using an ORM framework that provides transparent persistence does not have to write SQL queries or have an in-depth understanding of the underlying database structure.

12. Overhead that SQL query mapping frameworks and ORM frameworks add to call-level APIs.

In some situations the overhead from SQL query mapping and ORM frameworks may impose a performance penalty to applications that use them.

13. Relationship between Hibernate and JPA?

JPA is the Java Persistence API, which is part of the Enterprise Java Bean 3.0 standard. JPA is a subset of Hibernate, which is the de facto industry standard for ORM frameworks.

14. Purpose of the <Class name>.hbm.xml files in Hibernate?

The <Class name>.hbm.xml files are the XML mapping files that defines the relationship between the object-oriented classes and relational tables.

15. Mechanisms that are used to configure Hibernate?

The characteristics of which DBMS, database, and database connection specifics are included in a configuration file named hibernate.cfg.xml. This XML file includes information about the driver to be used, the URL for the database connection string, and the username and password to connect to the database. Additionally, the XML configuration file includes a listing of the <Class name>.hbm.xml files that define the mapping and the parameters necessary to specify the pooling of database connections.

16. Attibute specification in the Hibernate configuration files?

Attributes are specified in the mapping resource files (e.g., the <Class name>.hbm.xml files).

17. Purpose of the <set> tag in the Hibernate configuration files?

The <set> tag identifies the mapping of 1:M or M:1 relationships among the o-o classes.

18. Primary keys of the database tables specification within the Hibernate environment?
Primary keys of the database tables are specified within an <id> tag element in the XML mapping file.

19. Purpose of the SchemaExport tool in Hibernate?

The SchemaExport tool in Hibernate will produce SQL Data Definition Language scripts for creating a relational database schema described in a specific set of mapping files.

20. Figure 7; why Student, Faculty, and Registration do not have autogenerated primary keys.

Student and Faculty get their primary keys from Person. The primary key of Registration is a composite of the primary keys from Section and Student.

21. Importance of pooling database connections.

Pooling of database connections refers to the process of using a limited number of database connections that are shared by multiple applications and users. Hibernate permits specification of parameters that enable pooling of database connections to occur. By pooling database connections, a new connection to the DBMS does not have to be made each time an application wishes to interact with the database, thus saving costs.

22. Four ways an inheritance structure can be mapped to a relational schema.

a. Table per subclass. Requires a table for each class and subclass.

b. Table per concrete class with implicit polymorphism. Attributes from superclass are included in all tables representing the subclasses (no table for superclass).

c. Table per concrete class with unions. Attributes from superclass are included in all tables representing the subclasses (no table for superclass); the primary key column name is shared between concrete classes.

d. Table per class hierarchy. Attributes from the subclasses are included in one table (only one table with all attributes from superclass and subclasses).

23. Why differentiate between many-to-one and one-to-many associations in the o-o world.

Differentiation is based on the side from which you are observing the directional association. Because navigation to the objects occurs through the objects in the o-o world, it makes sense to know whether you were attempting to access data from the M:1 or 1:M perspective. The o-o programming language can then choose appropriate iterations or routines based on knowing the direction of the association.

24. Practical impact of specifying an association as composition from the perspective of object-relational mapping?

Composition means that one side of the association has been specified as the “whole,” and this manages the life cycle of its “parts” to the extent that the “parts” cannot exist without the “whole.” In practice, this means that the foreign key attribute in the relational table that is mapped to an object must be defined as NOT NULL.

25. Importance of well-designed fetching strategies.

Fetching strategies define when and how the ORM framework retrieves persistent objects to run-time memory during a navigation process. Well-designed fetching strategies allow an o-o application to run with minimal performance issues when accessing databases with an ORM framework approach.
26. Table 5 responsibilities of ORM frameworks.

(a) The first responsibility is linked to transparent persistence. What does this mean?

Within object-relational mapping (ORM) frameworks, persistence is defined as the ability to store the state of an object between application execution sessions. For example, Oracle defines persistent data as “information that can outlive the program that creates it.” (see http://docs.oracle.com/html/E24396_01/jdo_overview_intro_ transpers.html). Transparent persistence refers to the ability of the ORM framework to assist in the storage and retrieval of persistent data with little knowledge or effort required on the part of the developer. A separate database language is not required to manipulate the persistence status of objects, but instead these actions can be completed with statements from a programming language (e.g., Java). Some experts believe that transparent persistence allows developers to have better performance with less code to write (see D. K. Barry’s work at: http://www.service-architecture.com/ object-oriented-databases/articles/transparent_persistence.html).

(b) Why is it useful to have code needed for database access centralized (and not replicated)?

When the code for database access is centralized (and not replicated) by the ORM frameworks, the application developers do not have to worry about generating the underlying SQL code for database access. Additionally, the centralization means that the code for database access does not have to be written for each of the classes separately, but the relationships between the class structures and the database schema are systematically and centrally defined.

(c) What are services for concurrency control?

Services for concurrency control determine that activities conducted at the same time generate correct and accurate results, in a quick and timely fashion. Concurrency control in databases means that actions and transactions against the database are conducted without destroying the integrity of the data values stored in the database. Hibernate uses optimistic concurrency control (by default) though it is also possible to configure Hibernate to use a fully serializable isolation approach.

27. SELECT keyword in HQL?

The SELECT keyword is necessary when you want to view a collection of attributes instead of whole objects in the source class.

28. HQL implicit association join?

An implicit association join is when you do not have to specify how the tables need to be linked together in the HQL. The implicit association join draws this information from the XML mapping files in Hibernate, and allows you to use object-oriented navigation in the queries.
29.
Main difference HQL, SQL for explicit joins?
The main difference is that the HQL query does not need to specify how the linking occurs whereas in the SQL query the specifics of the foreign key to primary key link are detailed in the SQL syntax.

Answers to Problems and Exercises

In the 11th edition of the text, problems and exercises 1-8 have been removed. Please see the 10th edition materials for these exercises and solutions.
9.
Diagrammatic representation of Figure 2 Java situation.

Conceptual level E-R notation

[image: image1.emf]Customer

custID

discountPercentage

Order

orderID

orderDate

Logical level relational model

[image: image2.emf]custID

discountPercentage

Customer

orderID orderDate custID

Order

SQL query

SELECT C.custID, discountPercentage, orderID

FROM Customer C, Order O

WHERE C.custID = O.custID

AND orderID = 1;
10 a. Conceptual data model with EER notation
[image: image3.emf]PERSON

PersonID

LastName

FirstName

PersonType

d

FACULTY

FacultyID

Office

STUDENT

StudentID

YearMatriculated

PersonType:

"F" "S"

SECTION

SectionID

SectionRegNbr

SectionNbr

Semester

COURSE

CourseID

CourseNbr

CouseTitle

REGISTRATION

SectionID

StudentPersonID

Status

Grade

NumGrade

10 b. Referential integrity constraints for logical data model in Figure 6.

[image: image4.emf]PersonID LastName FirstName PersonType

FacultyPersonID FacultyID Office

StudentPersonID StudentID YearMatriculated

SectionID StudentPersonID Status Grade NumGrade

PERSON

FACULTY

STUDENT

REGISTRATION

SectionID

SECTION

SectionRegNbr SectionNbr Semester CourseID FacultyPersonID

CourseID

COURSE

CourseNbr CourseTitle

10 c. For each of the SQL queries included in Problems and Exercises 11-19 (abbreviated below as P&E), use the diagram from 10b solution to highlight the joins between the tables that are used in the queries.

In each of the following solutions, an oval shape has been used to “highlight” the joins between the tables that are relevant to each of the queries.

10.c.P&E11 There is only one table so there are no joins to show.

10.c.P&E12

[image: image5.emf]PersonID LastName FirstName PersonType

FacultyPersonID FacultyID Office

StudentPersonID StudentID YearMatriculated

SectionID StudentPersonID Status Grade NumGrade

PERSON

FACULTY

STUDENT

REGISTRATION

SectionID

SECTION

SectionRegNbr SectionNbr Semester CourseID FacultyPersonID

CourseID

COURSE

CourseNbr CourseTitle

10.c.P&E13
[image: image6.emf]PersonID LastName FirstName PersonType

FacultyPersonID FacultyID Office

StudentPersonID StudentID YearMatriculated

SectionID StudentPersonID Status Grade NumGrade

PERSON

FACULTY

STUDENT

REGISTRATION

SectionID

SECTION

SectionRegNbr SectionNbr Semester CourseID FacultyPersonID

CourseID

COURSE

CourseNbr CourseTitle

10.c.P&E14
[image: image7.emf]PersonID LastName FirstName PersonType

FacultyPersonID FacultyID Office

StudentPersonID StudentID YearMatriculated

SectionID StudentPersonID Status Grade NumGrade

PERSON

FACULTY

STUDENT

REGISTRATION

SectionID

SECTION

SectionRegNbr SectionNbr Semester CourseID FacultyPersonID

CourseID

COURSE

CourseNbr CourseTitle

10.c.P&E15

[image: image8.emf]PersonID LastName FirstName PersonType

FacultyPersonID FacultyID Office

StudentPersonID StudentID YearMatriculated

SectionID StudentPersonID Status Grade NumGrade

PERSON

FACULTY

STUDENT

REGISTRATION

SectionID

SECTION

SectionRegNbr SectionNbr Semester CourseID FacultyPersonID

CourseID

COURSE

CourseNbr CourseTitle

10.c.P&E16

[image: image9.emf]PersonID LastName FirstName PersonType

FacultyPersonID FacultyID Office

StudentPersonID StudentID YearMatriculated

SectionID StudentPersonID Status Grade NumGrade

PERSON

FACULTY

STUDENT

REGISTRATION

SectionID

SECTION

SectionRegNbr SectionNbr Semester CourseID FacultyPersonID

CourseID

COURSE

CourseNbr CourseTitle

10.c.P&E17

[image: image10.emf]PersonID LastName FirstName PersonType

FacultyPersonID FacultyID Office

StudentPersonID StudentID YearMatriculated

SectionID StudentPersonID Status Grade NumGrade

PERSON

FACULTY

STUDENT

REGISTRATION

SectionID

SECTION

SectionRegNbr SectionNbr Semester CourseID FacultyPersonID

CourseID

COURSE

CourseNbr CourseTitle

10.c.P&E18

[image: image11.emf]PersonID LastName FirstName PersonType

FacultyPersonID FacultyID Office

StudentPersonID StudentID YearMatriculated

SectionID StudentPersonID Status Grade NumGrade

PERSON

FACULTY

STUDENT

REGISTRATION

SectionID

SECTION

SectionRegNbr SectionNbr Semester CourseID FacultyPersonID

CourseID

COURSE

CourseNbr CourseTitle

10.c.P&E19

[image: image12.emf]PersonID LastName FirstName PersonType

FacultyPersonID FacultyID Office

StudentPersonID StudentID YearMatriculated

SectionID StudentPersonID Status Grade NumGrade

PERSON

FACULTY

STUDENT

REGISTRATION

SectionID

SECTION

SectionRegNbr SectionNbr Semester CourseID FacultyPersonID

CourseID

COURSE

CourseNbr CourseTitle

11.
HQL for finding the titles and numbers of all 300-level IS courses:
select c.courseTitle, c.courseNbr

from Course c

where substring(c.courseNbr,1,4) = 'IS 3'

12.
HQL for finding the titles and numbers of all 300-level IS courses offered in spring 2012:
select c.courseNbr, c.courseTitle

from Section s

join s.course c

where substring(c.courseNbr,1,4) = 'IS 3' and

s.semester = ‘Spring 2012’
13.
HQL for finding the names of all students taking at least one course with a faculty member:
select distinct f.lastName, f.firstName, st.lastName, st.firstName

from Section s

join s.course c

join s.faculty f

join s.enrolledStudents reg

join reg.student st

order by f.lastName, f.firstName
14.
HQL for finding the names and matriculation year for all students enrolled in IS 440 for spring 2012:
select st.lastName, st.firstName, st.yearMatriculated

from Section s

join s.course c

join s.enrolledStudents reg

join reg.student st

where c.courseNbr='IS 440' and s.semester = 'Spring 2012'
15.
HQL for finding the average grade earned in IS 460 by students who matriculated in 2010, regardless of when they took the course:
select avg(reg.numGrade)

from Section s

join s.course c

join s.enrolledStudents reg

join reg.student st

where c.courseNbr='IS 460' and st.yearMatriculated=2010
16.
HQL for total credit hours for each student who matriculated in 2010:
select st.lastName, st.firstName, sum(c.creditHours)

from Section s

join s.course c

join s.enrolledStudents reg

join reg.student st

where st.yearMatriculated=2010

group by st.studentID

17.
HQL for finding the names and office locations for faculty who taught IS 350 in Fall 2010:
select f.lastName, f.firstName, f.office

from Section s

join s.course c

join s.faculty f

where c.courseNbr = 'IS 350' and

s.semester = 'Fall 2010'

18.
HQL for finding the names and office locations for faculty who taught more than one course in Fall 2010:
select f.lastName, f.firstName, f.office

from Section s

join s.course c

join s.faculty f

where s.semester='Fall 2010'

group by f.facultyID

having count(s.sectionNbr)>1
19.
HQL for names and email addresses of students who took at least one IS course in 2010-2011 or 2011-2012:
select st.lastName, st.firstName, c.courseNbr, count(c.id)

from Section s

join s.course c

join s.enrolledStudents reg

join reg.student st

where substring(c.courseNbr,1,2) = ‘IS’ and

(s.semester in (‘Fall 2010’, ‘Spring 2011’, ‘Fall 2011’, ‘Spring 2012’))

having count(c.id)>0

Answers to Field Exercises

1. & 4.
Students are encouraged to use the interviewing tips mentioned in earlier textbook chapters to complete these exercises.
2.
Student answers will vary due to the depth of their research and the current state of the market.

3.
Student answers will vary due to the depth of their research and the current state of the market. However, a few items that may be mentioned would be: the wisdom of choosing proprietary approaches (LINQ) vs. opensource (Hibernate); the costs – initial and long-term – of proprietary vs. opensource; and the availability of staff with skills for Microsoft tools vs. opensource.
Copyright © 2013 Pearson Education, Inc. publishing as Prentice Hall
Copyright © 2013 Pearson Education, Inc. publishing as Prentice Hall

