510

Modern Database Management, Eleventh Edition

511
Chapter 12

Chapter 12 Distributed Databases

Chapter Overview

Please note that the material for this chapter is based upon the Web version of Chapter 12, not the abbreviated version of Chapter 12 in the text. The purpose of this chapter is to discuss distributed database management. The trend toward distributed databases is being driven by the continued evolution of distributed database management systems software, the increasing importance of workgroup computing, and the globalization of commerce. This chapter, along with Chapter 11 on data and database administration, provides thorough coverage of database concurrent access controls.

Chapter Objectives

Specific student learning objectives are included at the beginning of each chapter. From an instructor’s point of view, the objectives of this chapter are to:

1. Discuss the various options that are available for distributing data in organizations.

2. Discuss the potential advantages and risks associated with distributed databases.

3. Enable the student to compare distributed database design strategies with respect to reliability, expandability, communications overhead costs, manageability, and data consistency.

4. Discuss the four types of transparency: location, replication, failure, and concurrency.

5. Consider both the need for and the accomplishment of query optimization.

Key Terms
	Asynchronous distributed database
	Global transaction
	Semijoin

	Commit protocol
	Local autonomy
	Synchronous distributed database

	Concurrency transparency
	Local transaction
	

	Decentralized database
	Location transparency
	Timestamping

	Distributed database
	Replication

transparency
	Transaction manager

	Failure transparency
	
	Two-phase commit

Classroom Ideas

1. Assign your students the task of looking for examples of distributed database applications in the press. Discuss the issues in these examples based on material in the text.

2. Discuss the major options for distributing databases. Ask your students to help build a list of the advantages and disadvantages for each of these approaches.

3. Discuss the architecture of a distributed DBMS (Figures 2 and 3). Walk through the steps for both a local and remote database request.

4. Conduct a discussion of the four types of transparency: location, replication, failure, and concurrency. Relate this discussion to the database shown in Figure 10. Comment on what support (if any) is provided for each type of transparency by the DBMS your students are using in the course.

5. Explain locking, deadlock, and timestamping in a distributed database environment.

6. Discuss the problem of query optimization in a distributed database environment using Table 2. This table shows the dramatic differences in query processing times depending on the strategy used.

7. Emphasize that the concepts illustrated in this chapter are not necessarily established in distributed database architectures. A review of current database magazines may produce comparisons of distributed database products which you can use to make students aware of current capabilities.

8. Discuss how simple distributed databases are created using middleware. For example, show how MS Access and Oracle can be linked via ODBC drivers, and an Access database can actually contain tables on both the local device running Access and a remote device running Oracle. Discuss the distributed database issues for this environment and how they should be managed.

Answers to Review Questions

1. Define each of the following terms:

a. Distributed database. A single logical database that is spread physically across computers in multiple locations that are connected by a data communications link
b. Location transparency. A design goal for a distributed database that says that a user (or a user program) using data need not know the location of the data
c. Two-phase commit. An algorithm for coordinating updates in a distributed database
d. Global transaction. A transaction that requires reference to data at one or more nonlocal sites to satisfy the request
e. Local autonomy. A design goal for a distributed database which says that a site can independently administer and operate its database when connections to other nodes have failed

f. Timestamping. A concurrency control mechanism that assigns a globally unique timestamp (date and time) to each transaction. Timestamping is an alternative to the use of locks in distributed databases.
g. Transaction manager. A software module that maintains a log of all transactions and maintains an appropriate concurrency control scheme
2. Match terms to definitions:
c
replication transparency

e
unit of work

d
global transaction

b
concurrency transparency

f
replication

a
failure transparency

3. Contrast the following terms:

a.
Distributed database; decentralized database. Both distributed and decentralized databases are stored on computers at multiple locations. In a decentralized database, however, a network does not interconnect the computers; users at various sites cannot share data. Thus, it is best regarded as a collection of independent databases rather than having the geographical distribution of a single database.

b. Homogeneous distributed database; heterogeneous distributed database. In a homogeneous distributed database, the same DBMS is used at each node; in a heterogeneous distributed database potentially different DBMSs are used at each node. It is difficult in most organizations to force a homogeneous environment, yet heterogeneous environments are much more difficult to manage.

c. Location transparency; local autonomy. In a distributed database, the network must allow users to share the data as transparently as possible (location transparency), yet it must allow each node to operate autonomously (local autonomy) when network linkages are broken or specific nodes fail.

d. Asynchronous distributed database; synchronous distributed database. Synchronous technology ensures data integrity and minimizes the complexity of knowing where the most recent copy of data is located. Synchronous technology may result in unsatisfactorily slow response time because the distributed DBMS is spending considerable time in checking that an update is accurately and completely propagated across the network. Asynchronous technology tends to have acceptable response times because updates happen locally and data replicas are synchronized in batches at predetermined intervals. It may be more complex to plan and design to ensure exactly the right level of data integrity and consistency across the nodes.

e. Horizontal partition; vertical partition. The advantages and disadvantages of both techniques are similar with the exception that combining data across vertical partitions is more difficult than across horizontal partitions. This difficulty arises from the need to match primary keys or other qualifications to join rows across partitions. Horizontal partitions support an organizational design in which functions are replicated, often on a regional basis; while vertical partitions are typically applied across organizational functions with reasonably separate data requirements.

f. Full refresh; differential refresh. In full refresh, a snapshot of the replicated portion of the database is sent to each site that carries a copy of the replicated database. In differential refresh, only those pages that have changed since the last snapshot are sent to each site that carries a copy of the replicated database. In this case, a snapshot log for each replicated table is joined with the associated base to form a set of changed rows to be sent to the replicated sites.

g. Push replication; pull replication. With push replication, the central master site decides when a local site is updated. Examples include snapshot replication and near real-time replication. With pull replication, the target, not the source node, controls when a local database is updated. The local database determines when it needs to be refreshed and requests a snapshot or the emptying of an update message queue. Pull strategies have the advantage that the local site controls when it needs and can handle updates. Thus synchronization is less disruptive and occurs when needed by each site.

h. Local transaction; global transaction. A local transaction requires reference only to data that are stored at the site where the transaction originates, while a global transaction needs a reference to data at one or more nonlocal sites to satisfy the request.

4. Six business conditions that encourage using distributed databases:

a. Distributed and autonomous business units. Divisions, departments, and business units in modern organizations are often geographically (and possibly internationally) distributed. Often each unit has the autonomy to create its own information systems, and often these units want local data over which they can have controls.

b. Need for data sharing. Even moderately complex business decisions require sharing data over business units, so it must be convenient to consolidate data across local databases on demand.

c. Need to contain data communications costs and reliability. The cost to ship large quantities of data across a communications network or to handle a large volume of transactions from remote sources can be high. Also, dependencies on data communications can be risky; keeping local copies or fragments of data can be a reliable way to support the need for a rapid access to data across the organizations.

d. Multiple application vendor environments. Today, many organizations purchase packaged application software from several different vendors. Each “best in breed” package is designed to work with its own database and possibly with different database management systems. A distributed database can possibly be defined to provide functionality that cuts across the separate applications.

e. Database recovery. Replicating data on separate computers is one strategy for insuring that a damaged database can be quickly recovered and users can have access to data while the primary site is being restored. Replicating data across multiple computer sites is one natural form of a distributed database.

f. Satisfying both transaction and analytical processing. The requirements for database management vary across OLTP and OLAP applications. Yet, the same data are in common between the two databases supporting each type of application. Distributed database technology can be helpful in synchronizing data across OLTP and OLAP platforms.

5. Two types of homogeneous distributed databases:

a. Autonomous. Each DBMS works independently, passing messages back and forth to share data updates.

b. Nonautonomous. A central, or master, DBMS coordinates database accesses and updates across the network.

6. Five characteristics of homogeneous distributed databases:

a. Data are distributed across all the nodes.

b. The same DBMS is used at each location.

c. All data are managed by the distributed DBMS (so there is no exclusively local data).

d. All users access the database through one exclusive schema or database definition.

e. The global schema is simply the union of all the local database schemas.

7. Four characteristics of heterogeneous distributed databases:

a. Data are distributed across all the nodes.

b. Different DBMS is used at each location.

c. Some users require only local access to databases, which can be accomplished using only the local DBMS and schema.

d. A global schema exists, which allows local users to access remote data.

8. Five advantages of distributed databases vs. centralized databases:

a. Increased availability and reliability. When a centralized system fails, the database is unavailable to all users. A distributed system will continue to function at some reduced level however, even when a component fails.

b. Local control. Distributing the data encourages local groups to exercise greater control over “their” data, which promotes improved data integrity and administration. At the same time, users can access nonlocal data if necessary.

c. Modular growth. Suppose that an organization expands to a new location or adds a new work group. It is often easier and more economical to add a local computer and its associated data to the distributed network than to expand a large central computer. Also, there is less chance of disruption to existing users than in the case of a central system.

d. Lower communication costs. With a distributed database, data can be located closer to point of use. This can reduce communication costs, compared to a central system.

e. Faster response. Depending on how data are distributed, most requests for data by the local users can be satisfied by data stored at the local site. This speeds up query processing because communication and central computer delays are minimized.

9. Four costs and disadvantages of distributed databases:

a. Software cost and complexity. More complex software (especially the DBMS) is required for a distributed database.

b. Higher processing overhead. The various sites must exchange messages and perform additional calculations to ensure proper coordination among data at the different sites.

c. Data integrity maintenance. A by-product of the increased complexity and need for coordination is the additional exposure to improper updating and other problems of data integrity.

d. Slow response. If the data are not distributed properly according to their usage, or if queries are not formulated correctly, response to requests for data can be extremely slow.

10. Five advantages of the data replication form of distributed databases:

a. Reliability. If one of the sites containing a relation (or the database) fails, a copy can always be found at another site without network traffic delays. Also, available copies can all be updated as soon as possible when transactions occur, and unavailable nodes will be updated once they return to service.

b. Fast response. Each site that has a full copy can process queries locally so queries can be processed rapidly.

c. Possible avoidance of complicated distributed transaction integrity routines. Replicated databases are usually refreshed at scheduled intervals, so most forms of replication are used when some relaxing of synchronization across the database copies is acceptable.

d. Node decoupling. Each transaction may proceed without coordination across the network. Thus, if nodes are down, busy, or disconnected (e.g., in the case of mobile personal computers), a transaction is handled when the user desires. In the place of real-time synchronization of updates, a behind-the-scenes process coordinates all data copies.

e. Reduced network traffic at prime time. Often, updating data happens during prime business hours, when network traffic is highest and the demands for rapid response greatest. Replication, with delayed updating of copies of data, moves network traffic for sending updates to other nodes to non-prime-time hours.

11. Two disadvantages of the data replication form of distributed databases:

a. Storage requirements. Each site that has a full copy must have the same storage capacity that would be required if data were stored centrally. Each copy requires storage space, and processing time is required to update each copy on each node.

b. Complexity and cost of updating. Whenever a relation is updated, it must eventually be updated at each site that holds a copy. Synchronizing these updates near real-time requires careful coordination.
12. Snapshot replication strategy:

A snapshot replication strategy works best when the environment has a single updater. In this case, effects of the multiple updates are effectively batched for the read-only sites. Product catalogs, price lists, and other reference data for a mobile sales force are likely to be appropriate for the snapshot replication approach.

13. Near real-time replication:

A near real-time replication works best when the environment has multiple updaters. Each database update event can be handled individually with the use of triggers.

14. Five factors that influence the viability of data replication:

a. Data timeliness. Applications that can tolerate out-of-date data (whether this be for a few seconds or a few hours) are better candidates for replication.

b. DBMS capabilities. An important DBMS capability is whether it will support a query that references data from more than one node. If not, then replication is a better candidate than partitioning schemes.

c. Performance implications. Replication means that each node is periodically refreshed. When this refreshing occurs, the distributed node may be very busy handling a large volume of updates. If the refreshing occurs by event triggers (for example, when a certain volume of changes accumulate), refreshing could occur at a time when the remote node is busy doing local work.

d. Heterogeneity in the network. Replication can be complicated if different nodes use different operating systems, DBMSs, or more commonly, different database designs. Mapping changes from one site to n other sites could mean n different routines to translate the changes from the originating node into the scheme for processing at the other nodes.

e. Communications network capabilities. Transmission speeds and capacity in a data communications network may prohibit frequent, complete refreshing of very large tables. Replication does not require a dedicated communications collection, however, so less expensive, shared networks could be used for database snapshot transmission.

15. Advantages and disadvantages of horizontal partitioning:

Advantages:

· Efficiency. Data are stored close to where they are used and separate from other data used by other users or applications.

· Local optimization. Data can be stored to optimize performance for local access.

· Security. Data not relevant to usage at a particular site are made unavailable.

· Ease of querying. Combining data across horizontal partitions is easy because rows are simply merged by unions across the partitions.

Disadvantages:

· Inconsistent access speed. When data from several partitions are required, the access time can be significantly different from local-only data access.

· Backup vulnerability. Because data are not replicated, when data at one site become inaccessible or damaged, usage cannot switch to another site where a copy exists; data may be lost if proper backup is not performed at each site.

16. Advantages and disadvantages of vertical partitioning:

The advantages and disadvantages of vertical partitioning are identical to those of horizontal partitioning, with the exception that combining data across vertical partitions is more difficult than across horizontal partitions. This difficulty arises from the need to match primary keys or other qualifications to join rows across partitions.

17. Five factors that influence the selection of a distributed database design strategy:

a. Organizational forces. Funding availability, autonomy of organizational units, and the need for security

b. Frequency and location or clustering of reference to data. In general, data should be located close to the applications that use those data.

c. Need for growth and expansion. The availability of processors on the network will influence where data may be located and applications may be run; this may indicate the need for expansion of the network.

d. Technological capabilities. Capabilities at each node and for DBMSs coupled with the costs for acquiring and managing technology must be considered. Storage costs tend to be low, but the costs for managing complex technology can be great.

e. Need for reliable service. Mission-critical applications and very frequently required data encourage replication schemes.

18. Six unique functions of a distributed DBMS:

a. Keep track of where data are located in a distributed dictionary.

b. Determine the location from which to retrieve requested data and the location at which to process each part of a distributed query.

c. If necessary, translate the request at one node using a local DBMS into the proper request to another node using a different DBMS and data model; return data to the requesting node in the format accepted for that node.

d. Provide data management functions such as security, concurrency and deadlock control, query optimization, and failure recovery.

e. Provide consistency among copies of data across the remote sites.

f. Present a single logical database that is physically distributed.

19. Effect of location transparency:

With location transparency, the user of an ad hoc data query need not be aware that required data exist at various sites, and therefore, that this is a global (rather than local) transaction.

20. Effect of replication transparency:

 With replication transparency, the user of an ad hoc data query need not be aware that identical data are stored at other sites. If a read request originates at a site that does not contain the requested data, the user need not be aware that the request has to be routed to another site, resulting in a global, rather than local, transaction.

21. Two-phase commit issue:

If a transaction fails during the commit phase as it attempts to commit at the involved remote sites, the transaction will be in limbo; this may result in an inconsistent database, as some commits have occurred, but not all.

22. Three improvements to the two-phase commit:

a. Read-only commit optimization. This approach identifies read-only portions of a transaction and eliminates the need for confirmation messages on these portions. For example, a transaction might include checking an inventory balance before entering a new order. The reading of the inventory balance within the transaction boundaries can occur without the callback confirmation.

b. Lazy commit optimization. This approach allows those sites which can update to proceed with updating, and other sites which cannot immediately update are allowed to “catch up” later.

c. Linear commit optimization. This approach permits each part of a transaction to be committed in sequence rather than hold up a whole transaction when subtraction parts are delayed from being processed.

23. Three steps in distributed query processing:

a. Query decomposition. In this step, the query is simplified and rewritten into a structured, relational algebra form.

b. Data localization. Here, the query is transformed from a query referencing data across the network as if the database were in one location, into one or more fragments that each explicitly reference data at only one site.

c. Global optimization. In this final step, decisions are made about the order in which to execute query fragments, where to move data between sites, and where parts of the query will be executed.

24. Conditions that suggest faster distributed query processing by using a semijoin:

In a semijoin, only the joining attribute is sent from one site to another, and then only the required rows are returned. If only a small percentage of the rows participate in the join, then the amount of data being transferred is minimal. Clearly, the semijoin saves network traffic, which can be a major contributing factor to the overall time to respond to a user’s query.

Answers to Problems and Exercises

1. Figure 9 types of transparency
a. Concurrency transparency

b. Replication transparency

c. Failure transparency

d. Location transparency

2. Figure 9 Standard Price List questions
a. UPDATE Part_T

SET UnitPrice = UnitPrice * 1.10

WHERE PartNumber = 56789;

i.
Not acceptable. The remote unit of work allows updates at a single remote computer. Thus, updates cannot be made simultaneously at more than one location—three in the case of Figure 9.

ii.
Not acceptable. The distributed unit of work allows various statements within a unit of work to refer to multiple remote locations. Updates however, cannot be made simultaneously at more than one location because all tables in a single SQL statement must be at the same location.

iii.
Acceptable. A distributed request allows a single SQL statement to refer to tables at more than one remote DBMS.

3. Figure 9 Parts databases questions
a. UPDATE Part_T

SET Balance = Balance * 1.10

WHERE PartNumber = 56789 AND Location = "San Mateo";

UPDATE Part_T

SET Balance = Balance * .9

WHERE PartNumber = 56789 AND Location = "New York";

i.
Not acceptable. The transaction in 3a. is essentially a sequence of SQL statements originated at one location, but attempted to be executed by multiple remote DBMSs. The remote unit of work protocol would support only transactions attempted to be executed at a single remote location, and in addition, the same DBMS has to run on the remote computer.

ii.
Acceptable. The distributed unit of work protocol does support protected updates involving multiple sites, provided that each SQL statement refers to table(s) at one site only.

iii.
Cannot determine. The distributed request protocol may or may not support failure transparency.

4. Heterogeneous database realistic? Heterogeneous distributed databases are very difficult database environments because of the necessity to maintain communication, data integrity, efficiency, optimization, and security. Databases at different locations may be based on different models, perhaps relational and network. Products that make it possible to communicate among mixed DBMSs and data models are just beginning to be available. It is a challenging task to optimize a database that runs on one platform; optimizing one across platforms can be a nightmare. The goals of developing open systems without such barriers continue to be elusive. Building and maintaining a production database in a heterogeneous environment is one of the most challenging information systems tasks in businesses now.

5. Table 2 differing results? The drastically different results of the queries shown in Table 2 come primarily from the way each query results in data being moved in order to be processed. In general, it is often advisable to break a query in a distributed database environment into components that are isolated at different sites. Then determine which site has the potential to yield the fewest qualified records, and move these results to another site where additional work is performed.

6. Table 2 use of semijoin? The fifth strategy in Table 2 utilizes a semijoin. The joining attribute in this case is represented by a composite primary key and is sent to the remote location (Chicago). The Detroit computer however, would not yield the fewest qualified records for this particular query (Table 2). (The 1 million SHIPMENT records in Detroit, joined with the 10,000 supplier records, would yield more qualified records than the 1 million records stored in Chicago.) A large percentage of the returned rows participate in this join.

7. Query optimization scenario
a. SELECT Part_T.PartNumber, Color

FROM Part_T, Supplier_T, Shipment_T

WHERE Supplier_T.City <> "Columbus"

AND Shipment_T.PartNumber = Part_T.PartNumber;

b.

1. Move PART relation to Detroit, and process the whole query at the Detroit computer.

2. Join the SUPPLIER and SHIPMENT at the Detroit computer, PROJECT these down to suppliers not from Columbus, and move the result to Chicago for matching with PARTS.

3. Join the SUPPLIER and SHIPMENT at the Detroit computer, PROJECT just SupplierNumber and PartNumber for suppliers not from Columbus, and move this qualified projection to Chicago for matching with PARTs.

c.

1. 100,000 records in PART *100 char = 10,000,000 char to be transferred. 10,000,000char / 10,000 char/sec= 1,000 seconds=16.7 min.

2. After the JOIN operation is completed, the result table will have a total of 1,000,000 records. Each of those records will be essentially the SHIPMENT relation’s record, extended with more information about its supplier, i.e., CITY. The join operation is a theta join over the Cartesian product of the two relations, where the qualifying expression is equality. Another way to look at it is to consider it a selection over the Cartesian product, where the expression is an equality between Supplier_T.SupplierNumber and Shipment_T.SupplierNumber. The worst case is the maximum number of tuples in Shipment_T. We have to exclude tuples with Supplier_T.City<> Columbus (which we assume are 100,000). Each record will be 150 char each because there will be three attributes in the table: SupplierNumber, PartNumber, and City.

(1,000,000 – 100,000)records x 150char = 135,000,000char.

135,000,000char / 10,000 char/sec= 13,500 seconds=225 min= 3.75 hrs.

3. After the JOIN operation’s completion, the result table will have 1,000,000 records. We have to exclude tuples with Supplier_T.City <> Columbus (which we assume are 100,000).
Each record will be 100 char each because there will be only two attributes in the table: SupplierNumber, PartNumber, and City.
(1,000,000 – 100,000)records *100char = 90,000,000char.
90,000,000char / 10,000 char/sec = 9,000 seconds = 150 min = 2.5 hrs.

	Method
	Time

	1. Move PART relation to Detroit, and process the whole query at the Detroit computer.

2. Join the SUPPLIER and SHIPMENT at the Detroit computer, PROJECT these down to suppliers not from Columbus, and move the result to Chicago for matching with PARTS.

3. Join the SUPPLIER and SHIPMENT at the Detroit computer, PROJECT just SupplierNumber and PartNumber for suppliers not from Columbus, and move this qualified projection to Chicago for matching with PARTs.

	16.7 minutes

3.75 hours*

2.5 hours*

* We assume a history of 100,000 shipments from Columbus.

d.
Because SHIPMENTS from Cleveland are 100,000, SHIPMENTS from Columbus could not exceed the number of 900,000. Or, to view the problem from another perspective, all PART records will always be less as a volume than SHIPMENTS not from Columbus. Hence, the first strategy is the optimal solution. Because the least number of records need to be transferred, the timing is the best among the three alternatives.

e.
Data replication. Each site that will have a full copy of the database can process the queries locally, so they can be processed rapidly.

Horizontal partitioning. Would allow isolation at multiple sites for SUPPLIERS according to their location. Hence, we wouldn’t have to scan all records in the SUPPLIER table in order to select those that are not Columbus-located SUPPLIERS. Combining those records would be easy because they could be merged by unions across the partitions.

Vertical partitioning. Would be impossible in the case of 7.a. because all the tables in the example consist of records of two attributes only.

8. Large retail store chain database scenario
a.
The distributed database solution will have several advantages compared to a centralized system. When a centralized system fails, the database is unavailable to all users, regardless of their location. A distributed system will continue to function at some reduced level, however, even when a component fails. For a large retail chain with a large number of stores and store departments, availability is a serious consideration. The distributed database solution makes it easier to add a new location to the distributed network because it would be more economical to add a new local computer than to expand the existing central machine. There is less chance of disruption to existing users too. Slow response time, however, will still be a concern because schedule updates at each store are made five times per hour. A decentralized solution would not provide an opportunity for the corporation to control the information at the various locations because the local databases will not be connected in a corporate network.

b.
Partially or totally replicated across geographically distributed sites, with each copy periodically updated with snapshots.

9. Fitchwood data mart access frequency recommendation: Because the data is only updated weekly, a distributed database is recommended. We don’t have information on the telecommunications cost associated with connecting to systems in Florida; however, we can assume that it would be less expensive to send data weekly to Florida than have users constantly access a central database in the main office.

10. Fitchwood data distribution strategy? The best data replication strategy for this scenario would be snapshot replication. Because the entire data mart is refreshed every weekend, we would need to perform a full refresh of the replicated database. Depending upon the time and cost to do this, we may need to rethink how we refresh the data mart. An incremental refresh of the data mart might be more efficient because an incremental refresh could also be done of the replicated database.

11. Fitchwood data mart weekly update? Because data is static at all sites, the data mart would be refreshed weekly at the central location. If we assume that a full refresh is performed (from Chapter 9), then the replicated database would also need a full refresh. As mentioned in the answer for Problems and Exercises 10, if the data mart’s method for loading data was changed to an incremental refresh, then the replicated database could also be incrementally refreshed.

12. Fitchwood data distribution strategy Sales & Marketing? Because there are ten different sites, changing the data mart refresh policy to employ an incremental refresh on a weekly basis is recommended. This would enable the distributed database to utilize snapshot replication with incremental refresh.

13. Fitchwood data distribution strategy for own data? Horizontal partitioning could be used. Each office would receive only a copy of records relevant to the agents employed by that office. This would be accomplished by partitioning the fact table as well as the dimension tables of the Fitchwood star schema (see Problems and Exercises in Chapter 9).

14. Fitchwood data distribution strategy for OLTP data? Depending upon the volume of transactions, snapshot replication would generally not be the best approach because there could be some delays in updating. The best approach would be to utilize synchronized replication if some delays could be tolerated. If the system could not tolerate delays, then a centralized system may need to be implemented.

15. Web services & distributed databases? Student answers will vary based on experience, understanding of chapter material, and depth of research.

16. PVFC database recommendation? A distributed database employing synchronized replication is recommended. Because order fulfillment could tolerate some delays, this approach would work well. A centralized approach would be more cost prohibitive because both facilities would always have to be connected.

17. PVFC centralized database approach? If a centralized approach was used, there would be no delay in updating such data as inventory levels. Also, there would not be a need for replicating data across the distributed DBMS. However, depending upon the distance between facilities and the volume of data transmitted, there could be substantial telecommunication costs. Also, the replicated approach provides some level of redundancy should there be a hardware or database failure at one site.

18. PVFC distributed database; recommended data distribution strategy? A synchronized replication approach is recommended. This approach is applicable because a small amount of delay between updates could be tolerated, particularly if updates to inventory levels were timed to correspond to when actual orders were fulfilled.

19. PVFC data distribution strategy? Horizontal partitioning is recommended. The remote order processing facility would still be replicated, but only with data on items available to customers west of the Mississippi.

20. PVFC data distribution strategy? An additional table, ShipOrigin_T, should be added which contains information about the warehouse as well as the manufacturing facility, including a unique ID for both. The ProductOnHand column from the PRODUCT_T table must be removed. A new column, BuildType, must be added to PRODUCT_T. This column will indicate whether the item is custom built or a speciality item. A new table, ProductQuantity_T, which contains the ProductID, ShipOriginID, and QuantityOnHand, will be needed. This table will keep track of the quantity of products on-hand at both the warehouse and the manufacturing facility. Regarding distribution strategies, the order processing facility as well as the warehouse should have replicated copies of the database utilizing horizontal partitioning of the Customer_T table to exclude international and East Coast customers. The best strategy for replication would be synchronized replication.

21. PVFC data distribution strategy? Due to the additional geographic and time zone differences from the west of the Mississippi River office, PVFC should also consider the cost of telecommunications and data volume transfer. However, the suggestion to use a synchronized replication approach is still recommended due to the benefits of redundancy should there be a hardware or database failure at one site.

22. PVFC data distribution strategy? If unlimited, error-free bandwidth between all the locations from which the data have to be accessed was possible, then PVFC might consider a centralized approach to gain the no delay in inventory updates through this option. However, a replication strategy would still provide some measure of protection if there is a hardware or database failure at the main centralized site.

23. Telecommuting and data distribution strategy? An organization with a high number of telecommuters would likely wish to preserve reliability (up-time) yet also have a measure of redundancy for possible outages. Replication via snapshots or synchronized replication would still seem to be a better solution for this scenario.

Answers to Field Exercises

1. Organization with distributed database environment
a. In order for the database to be considered distributed, the DBMS at each site must perform the following functions in addition to managing the local database:

1. Keep track of where data are located in a distributed dictionary.

2. Determine the location from which to retrieve requested data and the location at which to process each part of a distributed query.

3. If necessary, translate the request at one node using a local DBMS into the proper request to another node using a different DBMS and data model, and return data to the requesting node in the format accepted for that node.

4. Provide data management functions such as security, concurrency and deadlock control, query optimization, and failure recovery.

5. Provide consistency among copies of data across the remote sites.

b. Some important features of those products are summarized in Table 3 in the text. It is very difficult to select among those products and features because the exact capabilities of the product must match the organization’s needs. It is impossible to outline general principles for managing a distributed database.

c. Following you will find a detailed description of some problems related to each of the terms. A good approach to preparing the questions to be asked, is to put an emphasis on those aspects.

Location transparency. In general, it is easier to update data on one remote site than having to update data stored at multiple sites. To achieve location transparency, the distributed DBMS must have access to a current data dictionary that indicates the location(s) of all data across the network.

Replication transparency. Problems arise when one or more users attempt to update replicated data. The updates will have to be accomplished accurately and concurrently at all the sites holding a replicated copy.

Failure transparency. It is achieved by overcoming failure problems, including system failures such as erroneous data, disk head crash, etc. Communications link failures are also a problem.

Concurrency control. Three basic approaches in achieving concurrency transparency are locking, versioning, and time-stamping.

Query optimization. Both the user’s formulation and the intelligence of the DBMS to develop a sensible plan for processing affect query processing.

d. Current releases of DBMSs do not provide all of the known features of distributed database products. For example, some products provide location transparency for read-only transactions, but they do not yet support global updates.

e. The following factors determine the choice of a data distribution strategy:

1. Organizational forces. Funding availability, autonomy of organizational units, and the need for security.

2. Frequency and locality, or clustering of reference to data. In general, data should be located close to the applications that use those data.

3. Need for growth and expansion. The availability of processors on the network will influence where data may be located and when applications may be run and may indicate the need for expansion of the network.

4. Technological capabilities. Capabilities at each node and for DBMSs coupled with the costs for acquiring and managing technology must be considered. Storage costs tend to be low, but the costs for managing complex technology can be great.

5. Need for reliable service. Mission-critical applications and very frequently required data encourage replication schemes.

2. This exercise will stimulate various research strategies, and answers received will depend on the current state of the products that students investigate.

3. Organization with client/server database environment
a. In client/server environments, it is easy to define a database with tables on several nodes in a local or wide area network. Once a user program establishes a linkage with each remote site and suitable database middleware is loaded, full location transparency is achieved. So in client/server database form, distributed databases are readily available to any information systems developer, and heterogeneity of DBMS is possible.

b. The following benefits of distributed systems have to be considered:

· Increased availability and reliability

· Local control

· Modular growth

· Lower communication cost

· Faster response

4. Student answers will vary depending upon the organization visited. Consider inviting a guest speaker to your class, if students cannot visit organizations on their own.

5. This exercise will stimulate various research strategies, and answers received will depend on the current state of the products that students investigate.

Copyright © 2013 Pearson Education, Inc. publishing as Prentice Hall
Copyright © 2013 Pearson Education, Inc. publishing as Prentice Hall

