312
Modern Database Management, Eleventh Edition

Chapter 6
313

Chapter 6 Introduction to SQL

Chapter Overview

This chapter describes in detail what has become the standard query language for relational database management systems, SQL. Although SQL is illustrated in this chapter primarily through a current Oracle version (MySQL and Microsoft Access SQL are also sometimes displayed), SQL is a portable language that is available on all classes of computers and with many different DBMSs.

This chapter introduces SQL and emphasizes the Data Definition Language (DDL) and Data Manipulation Language (DML) commands. Single table queries are covered in this chapter, and multiple-table queries are covered in Chapter 7.

Several chapters contain important prerequisite material for this chapter. Chapter 4 introduces the relational model and provides much of the background for this chapter. The discussion in Chapter 5 on indexes is also important because choosing primary and secondary key indexes is one of the few, but crucial, internal database design choices for users of relational systems.

Chapter Errata

In the first printing of the textbook, a few mistakes were not discovered until after the textbook was printed. The “Errata” document on the textbook Web site chronicles all known issues with the textbook that were discovered after printing. The list below indicates those specific to this chapter.

1. The last sentence of Problem and Exercise #24 is incorrect. It should read: “Order the listing by Material, MaterialStandardPrice, and Thickness”.
Chapter Objectives

Specific student learning objectives are included at the beginning of the chapter. From an instructor’s point of view, the objectives of this chapter are to:

1. Explain SQL and show the basic operators so that the student can anticipate the capabilities of particular SQL-based systems.

2. Provide a historical perspective of the development of SQL and its continuing development. This perspective illustrates the benefits and risks of adopting a standard query language.

3. Show that SQL, although a standard and a high-level language, does have some flaws, and that SQL must evolve to include additional features.

4. Explain and illustrate the power of relational views for simplifying relational database processing.

5. Illustrate data definition language (DDL) commands for creating tables and views as well as modifying and dropping tables.

6. Provide examples of single table SQL queries.

7. Provide some examples of the use of functions within SQL queries.

8. Show how to establish referential integrity using SQL.

9. Illustrate the use of the group by and order by clauses.

Key Terms

	Base table
	Data manipulation language (DML)
	Scalar aggregate

	Catalog
	Dynamic view
	Schema

	Data control language (DCL)
	Materialized view
	Vector aggregate

	Data definition language (DDL)
	Relational DBMS (RDBMS)
	Virtual table

Classroom Ideas

1. Depending on how you choose to sequence the chapters of this book, you may want to begin lecturing on this chapter by reviewing normalization principles and discussing why one might want to implement a fully normalized database. See the section “Denormalization” in Chapter 5 for background on this topic. The point is to emphasize the difference between logical and physical database designs.

2. The capabilities and benefits of views are not as obvious to students as you might expect. First, many relational systems place limitations on operations that may be performed on views (for example, no or restricted modification). Second, views are not just the relational term for temporary table or for subschemas (from the network model); rather, views provide a capability for simpler query writing for casual users. Finally, views may have negative performance implications compared to temporary, intermediate tables explicitly created by a prewritten procedure. These points should be emphasized in lectures or assignments. Consider having students create both a view and a temporary table (or materialized view) in SQL. In most SQL systems, a temporary table can be created by the use of a SAVE or KEEP clause at the end of a query, or one can use a CREATE TABLE command that has a query (rather than column definitions) as its object. Then, the same query can be run and timed against both the view and temporary tables. As another alternative, have students derive the view table as part of the FROM clause of a query. One way to estimate the timing of each approach, given small data sets, is to use the EXPLAIN command (or similar command with your RDBMS) on each version of the query to show students how the query would be processed using each approach.

3. The simplicity of SQL syntax leads some students to become overconfident of their SQL prowess. It may help to develop some examples to demonstrate that logically and syntactically correct SQL queries can be constructed that do not accomplish the intended data manipulation and may be dangerously incorrect. For example, two tables may be joined using common domains (for instance, positive integers) but noncommon roles (for example, two tables can be joined on equal values of quantity-on-hand of a product and number of employees in a department). Such potential problems arise because the relational data model uses implicit relationships, not explicit ones. Stress the importance of testing a query on a small, tractable set of data before using it in a production environment.

4. With the variety of SQL implementations now available, we strongly recommend that you illustrate some SQL system in class and have the students use such a system. The Pine Valley Furniture and Mountain View Community Hospital cases in the text provide rich contexts in which to develop examples that emphasize those aspects of SQL the instructor considers most important. We have found that students learn SQL best by seeing and doing many examples and experimentation, so we encourage teaching SQL by example. When we teach SQL, we often spend about 15 minutes giving an overview of the evolution of SQL and providing some basic syntax and terminology. Then we spend between two and six hours in live demonstrations showing simple to complex queries. In a computer-enabled classroom where an SQL system can be demonstrated to and used by students, this time can be an effective, interactive learning experience.

All the SQL queries in this chapter can be found in a Microsoft Access database available from the publisher; you can show in class how Access SQL varies from standard SQL, and you can show variations on the queries from this chapter. In addition, a set of 40 lab exercise queries is available on www.teradatauniversitynetwork.com for use with the Pine Valley Furniture Company case. Many of these lab exercises are included already in this text. These queries are designed to work with a database that is close to, but not exactly, the data model in Figure 2-22.

5. It can be helpful to use one of the chapter case studies for homework assignments. When instructors choose to assign a chapter case study for homework, the students become very familiar with the tables used in the case study and they seem to learn the SQL syntax much more quickly than using the one-by-one problems and exercises at the end of the chapter.

6. Because many SQL systems include other modules (report writers, business graphics routines, screen painters, and so forth), this chapter can be expanded to discuss fourth-generation languages and systems prototyping. Explain that most packages include capabilities and development tools that are more than simply a relational DBMS and query language. If your school has joined the Oracle Academy, it may be possible to demonstrate additional tools such as SQL Developer and/or Designer/2000. Additionally, Oracle provides universal and free access to its Express Edition with a java-based application development environment which can easily be used on individually-owned computers.

7. It should be emphasized that SQL is still fundamentally a programming language for the professional programmer. That is, SQL is not really a suitable language for end-user system development. This does not diminish its importance because it achieves tremendous productivity gains for a professional programming staff and is used extensively by database administrators. Many of your students are likely to hold these positions during their careers. Other user interfaces that might permit access to a relational database (like QBE) are more appropriate for end users.

Answers to Review Questions

1. Define each of the following key terms:

a.
Base table. A table in the relational data model containing inserted raw data that is likely to correspond to one physical file in secondary storage (The base table is also referred to as one of the objects—such as the base tables, views, constraints, and so on—which have been defined for a particular database by a particular user, who owns the objects in the schema.)

b.
Data definition language. Those commands used to define a database, including creating, altering, and dropping tables and establishing constraints

c.
Data manipulation language. Those commands used to maintain and query a database, including updating, inserting, modifying, and querying dat.

d. Dynamic view. A virtual table that is created dynamically upon request by a user. Not a temporary table, its definition is stored in the system catalog. The contents of the view are materialized as a result of an SQL query that uses the view.

e.
Materialized view. Copies or replicas of data based on SQL queries, in the same manner that dynamic views are created. However, a materialized view exists as a table and care must be taken to keep it synchronized with its associated base tables.

f. Referential integrity constraint. An integrity constraint specifying that the value or existence of an attribute in one relation depends on the value or existence of a primary key in the same or another relation. Referential integrity means that a value in the matching column on the many-side must correspond to a value in the primary key for some row in the table on the one-side, or be null.

g.
Relational DBMS (RDBMS). A database management system that manages data as a collection of tables in which all data relationships are represented by common values (not links) in related tables

h.
Schema. A structure that contains descriptions of objects created by a user, such as base tables, views, constraints, and so on, as part of a database

i.
Virtual table. A table constructed automatically as needed by a DBMS. Virtual tables are not maintained as real data. Sometimes a virtual table is referred to as a dynamic view.

2. Match the following terms to the appropriate definitions:

d
view

h
referential integrity constraint

c
dynamic view

i
materialized view

j
SQL:200n

e
null value

k
scalar aggregate

a
vector aggregate

b
catalog

f
schema

g
host language

3. Contrast the following terms:

a.
Base table; view. A view is a virtual table and is often part of an external database. In contrast to a defined base table (relation), a view is not permanently represented in storage. A view definition is stored, and the contents of the view are calculated each time the view is referenced in a query. A view may join multiple tables or views together and may contain derived (or virtual) columns, while base tables cannot. In comparison to a temporary real table, a view consumes very little storage space. A view is costly (compared to a dynamic, materialized view), however, because its contents must be calculated each time that it is requested.

b. Dynamic view; materialized view. Dynamic views are not a temporary table but are materialized from an SQL query that uses the view definition that is stored in the system catalog. Materialized views exist as a table and, thus, must be kept synchronized with their associated base tables.

c. Catalog; schema. Schema is a structure that contains descriptions of objects created by a user, such as base tables, views, constraints, and so on. These objects have been defined for a particular database by a particular user, who owns those objects in the schema. The catalog is a set of schemas, which, when put together, constitute a description of a database. (If more than one user has created objects in the database, combining information about all their schemas will yield information for the entire database.)

4. History leading up to SQL:200n:

a. To provide direction for the development of RDBMSs, the American National Standards Institute (ANSI) and the International Organization for Standardization (IOS) approved a standard for the SQL relational query language functions and syntax proposed originally by the X3H2 Technical Committee on Database (Technical Committee X3H2 Database, 1986; ISO, 1987). This standard is often referred to as SQL/86. The 1986 standards have been extended to include an optional Integrity Enhancement Feature (IEF), often referred to as SQL/89. The ISO and ANSI committees created SQL-92 (Technical Committee X3H2 Database, 1989; ISO, 1989, 1991), which was a more extensive expansion of SQL/86. This standard was ratified in late 1992, and is known as International Standard ISO/IEC 9075:1992, Database Language SQL.
b. SQL: 1999 is a significant extension beyond SQL-92. SQL: 1999 established Core-level conformance, which must be met before any other level of conformance can be achieved. Eight additional types of enhanced conformance have been specified so far, including Active Database, Enhanced Integrity Management, Enhanced Datetime Facilities, Basic Object Support, Enhanced Object Support, OLAP Facilities, Persistent Stored Modules, and Call-Level Interface.

c. SQL:200n provides many enhancements to SQL: 1999 including predefined data types, type constructors, scalar, and table expressions. Also included as part of this standard is SQL/XML.

5. Describe a relational DBMS (RDBMS), its underlying data model, data storage structures, and manner of establishing data relationships:

a. A relational DBMS (or RDMBS) is a data management system that implements a relational data model.

b. Data are stored in a collection of tables, and the data relationships are represented by common values, not links.

c. The relational data model assumes that a table is a logical construct rather than a physical construct, so a table need not correspond to a physical file of contiguous records. The same data model may have many different possible physical implementation structures. The storage of the database is dependent on both the hardware and software environment. It is usually the concern of the system administrator.

d. The power of the RDBMS is realized through relationships existing between tables. These relationships are established by including a common column(s) in each table where a relationship is needed.

6. Six potential benefits of achieving an SQL standard:
a. Reduced training costs. Training in an organization can concentrate on SQL, and a large labor pool of IS professionals trained in a common language reduces retraining when hiring new employees.

b. Productivity. IS professionals can learn SQL thoroughly and become proficient with it from continued use, the organization can afford to invest in tools to help IS professionals become more productive, and programmers can more quickly maintain existing programs because they are familiar with the language in which programs are written.

c. Application portability. Applications can be moved from machine to machine when each machine uses SQL. Further, it is economical for the computer software industry to develop off-the-shelf application software when there is a standard language.

d. Application longevity. A standard language tends to remain so for a long time, so there will be little pressure to rewrite old applications. Rather, applications will simply be updated as the standard language is enhanced or new versions of DBMSs are introduced.

e. Reduced dependence on a single vendor. When a nonproprietary language is used, it is easier to use different vendors for the DBMS, training and educational services, application software, and consulting assistance. Further, the market for such vendors will be more competitive, which may lower prices and improve service.

f. Cross-system communication. Different DBMSs and application programs can more easily communicate and cooperate in managing data and processing user programs.

7. The components and structure of a typical SQL environment:

The SQL environment includes an instance of an SQL DBMS along with accessible databases and associated users and programs. Each database is included in a catalog and has a schema that describes the database objects. Information contained in the catalog is maintained by the DBMS itself, rather than by the users of the DBMS.

8. Distinguish among data definition commands, data manipulation commands, and data control commands:

a. The data definition language (DDL) commands of SQL are used to define a database, including its creation and the creation of its tables, indexes, and views. Referential integrity is also established through DDL commands. CREATE/DROP DICTIONARY, CREATE/DROP TABLE, ALTER TABLE, CREATE/DROP INDEX, CREATE/DROP VIEW are examples of DDL commands.

b. The data manipulation (DML) commands of SQL are used to load, update, and query the database through the use of the SELECT command. (START TRANSACTION, COMMIT WORK, ROLLBACK WORK, INSERT, UPDATE, and DELETE are examples of DML commands.)

c. Data control language (DCL) commands are used to establish user access to the database through the GRANT, ADD USER, and REVOKE commands.

9. Establishing referential integrity using an SQL:1999 compliant database and the differences among the ON UPDATE RESTRICT, ON UPDATE CASCADE, and ON UPDATE SET NULL clauses, and results of declaring ON DELETE CASCADE:

a. The SQL REFERENCES clause is used to establish referential integrity and prevents a foreign key value from being added if it is not already a valid value in the referenced primary key column.
b. The ON UPDATE RESTRICT clause allows a row to be deleted in a parent table only if no record in the child table references the primary key value to be deleted in the parent table. The ON UPDATE CASCADE clause will cause a change in a primary key value of a parent table to be passed through and update the foreign key value in the related child table. The ON UPDATE SET NULL option allows the update on the parent table, but changes the involved foreign key value in the child table to NULL. Using the SET NULL option would result in losing the connection between the parent and child tables, not a desired effect.
c. With DELETE CASCADE, removing the primary key value in the parent table also removes all associated records from the child table.
10. Reasons to create a view using SQL and how a view can be used to reinforce data security:

a. Views may simplify query commands, provide valuable data security, and enhance programming productivity for a database.

b. Tables and columns that are not included in a view will not be obvious to the user of the view. Restricting access to a view with GRANT and REVOKE statements (security statements) adds a further layer of security. It should not be regarded as the primary security layer.
11. Update limitations on data changes when referencing data through a view:

In general, update operations to data in a view are permitted as long as the update is unambiguous in terms of data modification in the base table. However, when the CREATE VIEW statement contains any of the following situations, that view may not be updated directly.

a. The SELECT clause includes the keyword DISTINCT.

b. The SELECT clause contains expressions, including derived columns, aggregates, statistical functions, and so forth.

c. The FROM clause, a subquery, or a UNION clause references more than one table.

d. The FROM clause or a subquery references another view, which is not updateable.

e. The CREATE VIEW command contains an ORDER BY, GROUP BY, or HAVING clause.

12. Saving reprogramming effort by using views:

When more than one program uses a view on the same base table, changes in all the applications that relate to this particular base table will require only re-creation of the view (outside the applications themselves). Views require considerable run-time computer processing because the virtual table of a view is recreated each time the view is referenced. Therefore, referencing a base table through a view rather than directly, can add considerable time to query processing, depending on the query. This additional operational cost must be balanced against the potential reprogramming savings from a view. A view also simplifies query writing because queries written against the view refer to only one (virtual) table, rather than several base tables.

13. Factors to be considered in deciding whether to create a key index for a table in SQL:

a. A key index on one column or a concatenation of columns enables rapid access to the rows of a table in a sequence or randomly by key value.

b. Choosing to index primary and/or secondary keys may increase the speed of row selection, table joining, and row ordering.

c. Dropping indexes will increase the speed of table updating.
14. Qualifying the ownership of a table in SQL:

Placing the ID of the owner prior to the table name and attribute name indicates ownership of a table. For example, if the user with the User_ID of ORTEGA owns the CUSTOMER_T table, that ownership would be indicated as ORTEGA.CUSTOMER_T. In order for one user to be allowed to use a table in the database owned by another user, the non-owner user must be granted authorization to use it, usually by the database administrator.

15. Changing attribute order and column heading labels in a result table:

a. Attributes are displayed in columns in the sequence in which they are listed in the SELECT list unless the SELECT list is *, in which case all attributes from the referenced tables are displayed in the sequence in which they are defined.

b. Use AS to specify column heading labels, e.g., SELECT CUST. CustomerName AS NAME will result in a column heading label NAME instead of CustomerName.
16. COUNT, COUNT DISTINCT, and COUNT(*) in SQL and the results generated when using these:

a. COUNT tallies only those rows that contain a value; it ignores all null values.

b. COUNT DISTINCT does not return a count on all values; it only tallies once if more than one row has equal values.
c. COUNT (*) counts all rows regardless of whether any of the rows contain null values.

d. If we never use NULL values, COUNT and COUNT(*) will return the same results. If our table includes no duplicates in the considered attribute values, COUNT and COUNT DISTINCT will have the same meaning.
17. Evaluation order for the Boolean operators (AND, OR, NOT) in an SQL command; getting the operators to work in the order that you want:

a. If multiple Boolean operators are used in an SQL statement, NOT is evaluated first, then AND, then OR.

b. With the use of parentheses around statements using standard mathematical notation, a set of statements may be given a user-chosen specific order of evaluation.
18. Limitations on attributes that can be selected when an SQL statement contains GROUP BY:

Only those columns that have a single value for each group can be included.

19. HAVING clause usage: The HAVING clause is useful when you need to select results based upon qualifications on an aggregation, such as a characteristic of a group. For example, if we have a table with transactional sales data for salespeople, we may want to sum up the total sales for a given period of time (an aggregate). We may then want to produce a list of only salespeople who sold more than a certain amount, say $1,000. This can be done using the HAVING clause.

20. IN operator usage: The IN operator is used in conjunction with the WHERE clause. A set of valid selections for the IN operator within parentheses follows the operator [e.g., IN (‘WA’, ‘CA’)]. The OR operator can be used to perform the same operation as the IN operator. For example, if part of our Where clause is State IN (‘MA’, ‘NH’), this could be substituted with State = ‘MA’ OR State = ‘NH’.

21. SQL as set-oriented? SQL is considered a set-oriented language because it processes sections (or sets) of table data that meet certain criteria (e.g., products that are desks or tables, for instance) with other sections (or sets) of table data that meet other criteria (e.g., products having a standard price above $300). SQL will “grab” the data that meets the criteria, hold it in a temporary work area(s), then using logical UNION and INTERSECTION commands find the “result set” that meets all criteria specified by the SQL statements. A set-oriented language, like SQL, is presented in contrast to a record-oriented language (such as C, Java, and COBOL) that must process one record/row of a table at a time.

22. LIKE keyword usage: CREATE TABLE LIKE is a quick way to clone a table.

23. Identity column definition and usage: The identity column creates a numeric sequence. For example, if we create the following table:

CREATE TABLE Test1_T

(ID
Smallint Identity(5,2),…)

Then the first record added to Test1_T table will have 5 as its value for the ID column. Subsequent record IDs will be incremented by 2.

This is beneficial because it allows a way to automatically generate a unique number, such as an ID.

24. Merge keyword usage: Prior to SQL:200n, one had to use both insert and update to update and merge data into a table. The Merge command allows one to do this in a single step. A common use for this would be updating master table from a transaction table where one might want to update records or create new records in the master table based upon what was done in the transaction table. Let’s take a look at an example: Suppose that we have an item table and a shipment table. The Item table contains all of the items and the Shipment table contains items received by the company.

Item Table

	ItemNo
	Description
	Quantity on Hand

	342
	Apple PowerBook
	10

	345
	IBM PC
	55

	346
	256mb Memory
	100

	347
	80gb HD
	6

Shipment Table

	ItemNo
	Description
	Quantity Received

	342
	Apple PowerBook
	1

	345
	IBM PC
	5

	347
	80gb HD
	3

	352
	Tape Backup
	4

Notice that there is one additional item in the Shipment table. Now, let’s write the merge statement to update the Item table. If the record exists in Item, then we will add to the quantity on hand. If it does not, then we will add the record.

MERGE INTO Item_T AS ITM

USING (SELECT ItemNo, Description, QuantityReceived FROM Shipment_T)

AS SH

ON (ITM.ItemNo = SH.ItemNo)

WHEN MATCHED THEN UPDATE

SET QuantityOnHand = ITM.QuantityOnHand + SH.QuantityReceived

WHEN NOT MATCHED THEN INSERT

(ItemNo, Description, QuantityOnHand)

VALUES (SH.ItemNo, SH.Description, SH.QuantityReceived);

25. SQL clause processing order: In a SELECT statement, the processing of clauses follows the order shown in Figure 10, and reproduced below:

· the FROM clause is evaluated first (sources of data)

· then:

WHERE (criteria to be met, if stated), and/or

GROUP BY (organizes rows according to values in stated column(s)), and

HAVING (finds groups meeting criteria), and

· then SELECT (particular columns to show/display), and

· then ORDER BY (sorts rows in result table).

26. SQL clause & derived table creation: A derived table can be defined in the FROM clause of an SQL statement.

27. ORDER BY clause & sort order: In an ORDER BY clause, the columns to be sorted can be referred to by: (1) column name from the actual table referenced in the FROM clause, or (2) column position in the SELECT clause list.

28. CHECK clause usage: In a CREATE TABLE command, the CHECK clause allows for validation rules for values to be inserted into the database, such as only allowing the Product_T table to have rows of products that meet a checklist of certain ProductFinish values (e.g., such as Cherry, Natural Ash, White Ash, Red Oak, Natural Oak, and Walnut). In a CREATE VIEW command, the WITH CHECK OPTION ensures that data entered into the database through a View meets the specifications stated in the WITH CHECK OPTION element of the View definition. For example, when a View is created with a criterion (or criteria) specification (e.g., all products with price > $300) and the WITH CHECK OPTION enabled, any SQL UPDATE or INSERT commands against the View that would violate the criterion of Price needing to be $300 or more would be rejected.

29. ALTER command usage: The ALTER command may be used to add new columns, change existing columns (name, data type, length, constraints, and default values), delete columns, add constraints, and delete constraints of a Table. The ALTER command may not be used with Views, nor can the ALTER command change the order of columns within a Table.

30. Usage of both WHERE and HAVING clauses? Yes, a query may use both the WHERE and HAVING clauses. The WHERE clause would restrict which rows are included for processing by the query. The HAVING clause (used in conjunction with a GROUP BY clause) determines which summarized groups are included in the result set.

Answers to Problems and Exercises
Note to Instructor: The solutions that include SQL statements are not intended as the definitive answer to the questions, but as possible solutions. Instructors and students will approach the problems using different SQL capabilities, achieving results that are also correct.

Solutions are presented with SQL syntax that should work in most Oracle installations (unless noted otherwise, e.g., MS Access). Solutions may need to be modified for a particular Oracle installation or if you are using a different relational database management system (e.g., Teradata) to illustrate the use of SQL commands. The solutions in this chapter and the following chapter use the naming conventions for tables, relations, attributes/columns, and views as shown in the textbook chapters, although Oracle SQL is not Upper/Lower case sensitive except when querying metadata (e.g., table names).

1. Database descriptions:

Note: A particular SQL system may restrict the length of column names or may not permit embedded spaces in names. The following answer may not be acceptable to the SQL system you use, but you may modify the grammar accordingly.

CREATE TABLE Student_T

(StudentID

NUMBER

NOT NULL,

StudentName

VARCHAR2(25),

CONSTRAINT Student_PK PRIMARY KEY (StudentID));

CREATE TABLE Faculty_T

(FacultyID

NUMBER

NOT NULL,

FacultyName

VARCHAR2(25),

CONSTRAINT Faculty_PK PRIMARY KEY (FacultyID));

CREATE TABLE Course_T

(CourseID

CHAR(8)

NOT NULL,

CourseName

VARCHAR2(15),

CONSTRAINT Course_PK PRIMARY KEY (CourseID));

CREATE TABLE Section_T

(SectionNo

NUMBER

NOT NULL,

Semester

CHAR(7)

NOT NULL,

CourseID

CHAR(8),

CONSTRAINT Section_PK

PRIMARY KEY(CourseID, SectionNo, Semester),

CONSTRAINT Section_FK FOREIGN KEY (CourseID)

REFERENCES Course_T (CourseID));

CREATE TABLE Qualified

(FacultyID

NUMBER

NOT NULL ,

CourseID

CHAR(8)

NOT NULL,

DateQualified
DATE,

CONSTRAINT IsQualified_PK PRIMARY KEY (FacultyID,

CourseID),

CONSTRAINT QualifiedFaculty_FK FOREIGN KEY (FacultyID) REFERENCES Faculty_T (FacultyID),

CONSTRAINT QualifiedCourse_FK FOREIGN KEY (CourseID) REFERENCES Course_T (CourseID));

CREATE TABLE Registration_T

(StudentID

NUMBER

NOT NULL,

SectionNo

NUMBER

NOT NULL,

Semester

CHAR(7)

NOT NULL,

CONSTRAINT IsRegistered_PK PRIMARY KEY (StudentID,

SectionNo, Semester),

CONSTRAINT StudentIsRegistered_FK

FOREIGN KEY(StudentID)

REFERENCES Student_T(StudentID),

CONSTRAINT CourseIsRegistered_FK

FOREIGN KEY (SectionNo, Semester)

REFERENCES Section_T(SectionID, Semester));

2. Creating a view
CREATE VIEW Student_V AS

SELECT StudentID, StudentName FROM Student_T;

3. Referential integrity & SQL clause usage in DDL
See the SECTION_FK constraint in the DDL for the SECTION table in Problem and Exercise 1 above.

4. SQL Definition commands
a. ALTER TABLE Student_T

ADD Class VARCHAR2(5);

b. DROP TABLE Registration_T;

c. ALTER TABLE Faculty_T

MODIFY FacultyName VARCHAR2(40);

Note: CHANGE instead of MODIFY also usually works.

5. SQL commands: INSERT, DELETE, UPDATE
a. INSERT INTO Student_T (StudentID, StudentName)

VALUES (65798,’Lopez’);

 INSERT INTO Student_T VALUES (65798,’Lopez’);

b. DELETE FROM Student_T WHERE StudentID = 65798;

c. UPDATE Course_T

SET CourseName = ‘Introduction to Relational Databases’

WHERE CourseID = ‘ISM 4212’;

6. SQL queries
a. SELECT StudentID, StudentName

FROM Student_T

WHERE StudentID < 50000;

b. SELECT FacultyName

FROM Faculty_T

WHERE FacultyID = 4756;

c. SELECT MIN(SectionID)

FROM Registration_T

WHERE Semester = ‘I-2008’;

7. SQL queries
a. SELECT COUNT(*)

FROM Registration_T

WHERE Section = 2714

AND Semester = ‘I-2008’;

b. SELECT FacultyID,CourseID,DateQualified

FROM Qualified_T

WHERE DateQualified >= ‘01-JAN-1993’;

8. SQL queries
a. We assume all the question wishes in the result set are the Student IDs. The Database course is ISM 4212, which is Section 2714 in the Registration_T table, and the Networking course is ISM 4930, which is Section 2715 in the Registration_T table:

SELECT StudentID,COUNT(*)

 FROM Registration_T

 WHERE SectionNo IN (2714,2715)

 GROUP BY StudentID

 HAVING COUNT(*) > 1;

b. In answering this question, we assume we are not interested in seeing those instructors who can teach neither course, but rather only those who can teach one but not the other course. To find those instructors who cannot teach either course requires SQL capabilities introduced in Chapter 7:

 SELECT InstructorID,COUNT(*)

FROM Qualified_T

WHERE CourseID IN (‘ISM 3113’,’ISM 3112’)

GROUP BY InstructorID

HAVING COUNT(*) = 1;

c. Using Chapter 6 SQL tools, a user could use two single table queries over the SECTION table and then manually inspect the results to find the courses that are taught in first semester but not in the second semester. This manual inspection solution works moderately well when there are few rows in the tables. Another possible manual solution is to list all the courses sorted by CourseID and Semester from the SECTION table, and then manually inspect the entries to find those with only first semester offerings. Again, this approach works moderately well if there are few rows in the tables.

Using some Chapter 7 tools, the following query could be used to find the requested information from the database:

SELECT CourseID, Semester

FROM SECTION

WHERE Semester = ‘I-2008’

AND CourseID NOT IN

(SELECT CourseID FROM SECTION Where Semester = ‘II-2008’);

9. SQL queries
a. SELECT DISTINCT CourseID

FROM Section_T;

b. SELECT StudentName

FROM Student_T

ORDER BY StudentName;

c. SELECT SectionNo,Semester,StudentID

FROM Registration_T

WHERE Semester = ‘I-2008’

ORDER BY SectionNo,Semester,StudentID;

d. SELECT CourseID,CourseName

FROM Course_T

ORDER BY CourseID;

Problems 10-15 are based on Figure 12, Adult Literacy situation
10.
 a. Query: How many tutors have status of Temp Stop?
SELECT COUNT(TutorID) AS NUMTSTOP

FROM Tutor

WHERE Status = ‘Temp Stop’;

b. Query: Which tutors are active?
SELECT TutorID

FROM Tutor

WHERE Status = ‘Active’;

11.
Query: What are TutorIDs for tutors who have not yet tutored anyone?
Using Chapter 6 tools, a user could formulate two single table queries over the database and then manually inspect the query results to find the required information. For instance, a query over the TUTOR table will provide TutorIDs of all Tutors and a query of DISTINCT TutorIDs from the MATCH_HISTORY table will provide a listing of all currently matched Tutors. By manual inspection of these two query result lists, one can find the “missing” TutorIDs from the MATCH_HISTORY table. For a database such as this one, with a small number of rows, a user could still find the information easily. As tables grow in size, such a multiple step manual inspection process becomes less feasible as a practical matter.
Using Chapter 7 tools, the following query could be used to get the information:

SELECT TutorID

FROM Tutor

WHERE TutorID NOT IN

(SELECT TutorID FROM MATCH_HISTORY);

12.
Query: How many students are matched with someone in first five months of year?
SELECT COUNT(StudentID)

FROM Match_History

WHERE StartDate BETWEEN ‘01-JAN-2008’ AND ‘31-MAY-2008’;

13.
Query: Which student has highest Read score?
SELECT Read, StudentID

FROM Student

ORDER BY Read DESC;

Note to Instructor: For #14 and #15, be sure the student realizes that a null value in ENDDATE means that a student is still studying in the program and should be included in the calculation. This is a good opportunity for the student to discover that a calculated field can be quite useful where null values can be expected. You may want to emphasize that this query will not update the base table and these null values will remain until a student leaves the program.

14.
This answer is shown in MS ACCESS SQL and uses the NZ function, which is not covered in the text, to deal with the null dates. If no date is entered as an end date in the dialog box, today’s date is inserted automatically for null values. As the NZ function is used here, it will return the number of days the student has studied into the calculated field.

Query: How long had each student studied in the adult literacy program?
SELECT StudentID, StartDate, EndDate,

 DateDiff(‘d’,[StartDate],NZ([EndDate], NZ

 [Enter date for blank records], Date()))) AS TotalDays

FROM Match_History;

15.
Query: What is the average length of time a student stayed (or has stayed) in the program?
This query needs to use the TotalDays information calculated in #14, but as the average function aggregates all rows, a two-step query will be needed to complete the problem. This problem also demonstrates using a query as the base for another query rather than working from a base table.

a.
Query: (Answer assumes this query is named CH6P15_First Query.)

SELECT DateDiff(‘d’,[StartDate],NZ([EndDate], NZ

 [Enter date for blank records], Date()))) AS TotalDays

FROM Match_History;

b.
Query:

SELECT AVG(TotalDays) AS [AverageTime]

FROM CH6P15_FirstQuery;

Note to instructor: Problems and Exercises 16-43 are based on the extended version of the Pine Valley Furniture Company database. (BigPVFC.mdb is the MS Access file version of this database; this is also available on Teradata student resources.) Please note that this version of the database has a different structure than that in the textbook version of the database (e.g., the salesperson information is in the extended version but not in the textbook version). Some of the field names may also have changed due to the version of the database you are using due to the reserved words of the DBMS. When you first use the database, check the table definitions to see what the exact field names and table structures are for the DBMS that you are using.

16. Add attribute to Product_T table

ALTER TABLE Product_T

ADD QtyOnHand NUMBER(5) CHECK (QtyOnHand >=0);

17.
Enter sample data: Students should answer this exercise using a series of UPDATE commands to SET values for this new field in each existing row of the Product_T table. If using Oracle and the CHECK option, students should receive error messages if they attempt to enter negative values for QtyOnHand values.

18.
Add Order to Order_T table: Students should answer this exercise using INSERT commands to enter new rows into the Order_T and OrderLine_T tables.

19.
PVFC queries: Although the data in this table is sparsely populated and the answers to these questions can be found by simple inspection of the table values, encourage the students to write SQL to derive the results:

a.
SELECT COUNT(*)

FROM WorkCenter_T;

b.
SELECT WorkCenterLocation

FROM WorkCenter_T;

20.
Employees whose name begins with “L”:
Query:
SELECT EmployeeID,EmployeeName

 FROM Employee_T

 WHERE EmployeeName LIKE ‘L%’;

21.
Employees hired during 1999:
Query:

SELECT EmployeeName

 FROM Employee_T

 WHERE EmployeeDateHired BETWEEN ‘01-JAN-1999’

 AND ‘31-DEC-1999’;

22.
Customers who live in California or Washington, ordered by descending zip code:

Query:
SELECT CustomerID, CustomerName

FROM Customer_T

 WHERE CustomerState IN (‘WA’,’CA’)

 ORDER BY PostalCode DESC;

OR

SELECT CustomerID, CustomerName

FROM Customer_T

WHERE CustomerState = ‘WA’

OR CustomerState = ‘CA’

ORDER BY PostalCode DESC;

23.
All raw materials made of cherry and 12 x 12 dimensions:

Note: The query shown here is an MS-Access query. If using Oracle, simply replace the double quotes with single quotes.

Query:
SELECT MaterialID, MaterialName

FROM RawMaterial_T

WHERE Material = “Cherry” AND Thickness =“12” AND Width = “12”;

24.
Material ID, name, material, standard cost, and thickness for raw materials made of cherry, pine, or walnut. Order the list by material, standard cost, and thickness:

Note: The query shown here is an MS-Access query. If using Oracle, simply replace the double quotes with single quotes. Also, an alternative solution is to use the OR operator rather than the IN operator, as in problem 22 above.

Query:
SELECT MaterialID, MaterialName, Material, MaterialStandardPrice, Thickness

FROM RawMaterial_T

WHERE Mateial IN (“Cherry”, “Pine”, “Walnut”)

ORDER BY Material, MaterialStandardPrice, Thickness;

25.
Display the product line ID and the average standard price for all products in each product line:

Query:
SELECT ProductLineID, AVG(ProductStandardPrice)

 FROM Product_T

 GROUP BY ProductLineID;

26.
For every product that has been ordered, display the product ID and the total quantity ordered (label this result TotalOrdered). List the most popular product first and the least popular last:

Query:
SELECT ProductID, SUM(OrderedQuantity) AS TotalOrdered

 FROM OrderLine_T

 GROUP BY ProductID

 ORDER BY SUM(OrderedQuantity) DESC;

27.
Customer ID and total number of orders placed:

Query:
SELECT CustomerID,COUNT(OrderID) AS TOTORDERS

FROM Order_T

GROUP BY CustomerID;

28.
Each salesperson’s list of customers, by ID:

Query:
SELECT DISTINCT SalespersonID, CustomerID

FROM Order_T

ORDER BY SalespersonID;

29.
Display the product ID and the number of orders placed for each product. Show the results in decreasing order, and label result column NumOrders:

Query:
SELECT ProductID, COUNT(ProductID) AS NumOrders

 FROM OrderLine_T

 GROUP BY ProductID

 ORDER BY COUNT(ProductID) DESC;

30.
Customer ID and total orders placed in 2010:

In MS-Access, the query would be written as follows:

SELECT Order_T.CustomerID, Count(Order_T.OrderID) AS TotOrders

FROM Order_T

WHERE (((Order_T.OrderDate) Between #1/1/2010# And #12/31/2010#))

GROUP BY Order_T.CustomerID;

In Oracle, the query would be written as follows:

SELECT CustomerID, Count(OrderID) AS TotOrders

FROM Order_T

WHERE OrderDate Between ‘01-Jan-2010’ and ‘31-Dec-2010’

GROUP BY CustomerID;

31.
Total number of orders for each salesman:

Query:
SELECT SalespersonID,count(OrderID) AS TotalOrders

FROM Order_T

GROUP BY SalespersonID;

32.
Customer ID and total orders placed if more than two orders were placed:

Query:
SELECT CustomerID, COUNT(OrderID) as TotOrders

FROM Order_T

GROUP BY CustomerID

HAVING Count(OrderID) > 2;

33.
All sales territories that have more than one salesman: (Note: We also show the number of salespeople for each territory.)

Query:
SELECT TerritoryID, COUNT(SalespersonName) AS NumSalesPeople

FROM Salesperson_T

GROUP BY TerritoryID

HAVING COUNT(SalespersonName) > 1;

34.
ProductID of most frequently ordered product:
Note: Because subqueries have not been covered yet, the student should just order the query by the total orders and report on the top ProductID (or ProductIDs if more than one):

Query:
SELECT ProductID, count(*) AS NumOrders

 FROM OrderLine_T

 GROUP BY ProductID

 ORDER by count(*) DESC;

An alternate approach in SQL-Server or MS-Access is to use the TOP predicate:

Query:

 SELECT TOP 1 ProductID, count(*) AS NumOrders

 FROM OrderLine_T

 GROUP BY ProductID;

35.
For every territory having more than one salesman, display TerritoryID and the number of salespersons in the territory:

Query:
SELECT TerritoryID, COUNT(*) AS NumSalesPersons

FROM Salesperson_T

GROUP BY TerritoryID

HAVING NumSalesPersons > 1;

36.
Number of orders for each salesperson except salespersons 3, 5, and 9:

Query:

SELECT SalespersonID, COUNT(*)

FROM Order_T

WHERE SalespersonID NOT IN (3, 5, 9)

GROUP BY SalesersonID;

37.
Each salesperson’s number of orders placed for each month of 2010.
The solution is shown here in both MS-Access and Oracle:

MS-Access

SELECT SalespersonID, month(OrderDate) AS Month,

COUNT(OrderID) as TotalOrders

FROM Order_t

WHERE OrderDate BETWEEN #01/01/2010# and #12/31/2010#

GROUP BY SalespersonID, month(OrderDate)

ORDER BY SalespersonID,month(OrderDate);

Oracle

SELECT SalespersonID, TO_CHAR(OrderDate,’MON’) AS Month,

 COUNT(OrderID) AS TotalOrders

 FROM Order_T

 WHERE OrderDate BETWEEN ‘01-Jan-2010’ and ‘31-Dec-2010’

 GROUP BY SalespersonID,TO_CHAR(OrderDate,’MON’)

 ORDER BY SalespersonID,TO_CHAR(OrderDate,’MON’);

38.
Material name, material, and width for raw materials that are not cherry or oak and whose width is greater than 10 inches.

Query:
SELECT MaterialName, Material, Width

FROM RawMaterial_T

WHERE Material NOT IN (“Cherry”, “Oak”)

AND Width > 10;

Suggested Venn Diagram:

[image: image1.png]

39.
ProductID, ProductDescription, ProductFinish, and ProductStandardPrice for oak products with price > 400 or cherry products with price < 300:

Query:
SELECT ProductID, ProductDescription, ProductFinish, ProductStandardPrice

FROM Product_T

WHERE (ProductFinish = ‘Oak’ and ProductStandardPrice > 400)

or (ProductFinish = ‘Cherry’ and ProductStandardPrice < 300);

Although not asked by the problem and exercise, an alternative solution might sort the output, as follows:

SELECT ProductID, ProductDescription, ProductFinish, ProductStandardPrice

FROM Product_T

WHERE (ProductFinish = ‘Oak’ and ProductStandardPrice > 400)

or (ProductFinish = ‘Cherry’ and ProductStandardPrice < 300)

ORDER BY ProductFinish, ProductStandardPrice;

Suggested Venn Diagram:

[image: image2.png]Product_T

40.
OrderID, CustomerID, OrderDate and most recent date among orders:

Query:
Write the query to find the most recent date among orders:

SELECT MAX(OrderDate) AS MostRecent FROM Order_T;

Then, use this query as a derived table to access with the FROM clause:
SELECT OrderID, CustomerID, OrderDate, MostRecent

FROM Order_T, (SELECT MAX(OrderDate) AS MostRecent FROM Order_T);

Suggested Venn Diagram:

[image: image3.png]All Orders from Order_T All Orders from Order_T

OrderiD,
CustomerID,

OrderDate +

Order with
Most Recent
Date

41.
CustomerID, number of orders from that customer, total number of orders from all customers combined, and the ratio of that customer’s orders to all customer orders:

Query:
/* first, get the total number of orders */

SELECT COUNT(OrderID) AS AllOrders FROM Order_T;

/* then, get the count by indiv customers */

SELECT CustomerID, COUNT(OrderID) AS CustOrders

FROM Order_T

GROUP BY CustomerID;

/* finally, combine these two queries to get ratio displayed */

SELECT Order_T.CustomerID,

COUNT(OrderID) AS OrderCount,

AllOrders,

COUNT(OrderID)/AllOrders AS RATIO

FROM Order_T,

(SELECT COUNT(OrderID) AS AllOrders FROM Order_T)

GROUP BY Order_T.CustomerID, AllOrders;

42.
List total product unit sales for products 1, 2, and 7 in just one row and three columns (labeled Prod1, Prod2, Prod7):
/* queries for each product */

SELECT SUM(OrderedQuantity) AS Prod1

FROM OrderLine_T

WHERE ProductID = 1;

SELECT SUM(OrderedQuantity) AS Prod2

FROM OrderLine_T

WHERE ProductID = 2;

SELECT SUM(OrderedQuantity) AS Prod7

FROM OrderLine_T

WHERE ProductID = 7;

/* query combining each derived table */

SELECT Prod1, Prod2, Prod7

FROM

(SELECT SUM(OrderedQuantity) AS Prod1 FROM OrderLine_T

WHERE ProductID = 1),

(SELECT SUM(OrderedQuantity) AS Prod2 FROM OrderLine_T

WHERE ProductID = 2),

(SELECT SUM(OrderedQuantity) AS Prod7 FROM OrderLine_T

WHERE ProductID = 7)

;

43.
Referential integrity constraints in SQL: The Oracle script version of the Big PVFC database has all the referential integrity commands included. However, the ASC files from the MS Access database could be used to develop new tables, and this would be a good exercise for students to use to develop such skills.

44.
Tyler Richardson scenario: Based on the symptoms described in the situation, it would appear that the alarm system company’s database maintains multiple address fields in the database that are not cross-checked with any potential customer promotions. It would appear that the mass mailing advertising list that is used to produce the mailings for potential customers (and may have been purchased from an outside-of-the-alarm-system-company mailing list) is not being cross-checked against a list of the company’s current customers’ mailing or physical addresses. Thus, existing customers who have a mailing address that is different from the physical address of the alarm system are receiving “junk” mail (or spam, if delivered electronically by email).

Suggestions for Field Exercises

1.
Students may need to be advised that most of the work in conducting an interview is completed before the actual meeting. Some of the tips below may help them conduct a successful interview and increase their self-confidence.

a. Before the interview:

· Identify the correct person to interview. Job titles do not always denote the same set of responsibilities. The typical database administrator is responsible for configuring and installing systems, setting up the environment for development and support, performing emergency restoration, and ensuring system security, capacity, and performance. The database administrator is a person having central control over data and programs accessing that data.

· Prepare the interview questions carefully. Phrase the questions so that they are open-ended and cannot be answered by a simple “yes” or “no.”

· Set up the interview several days in advance. Arrange the exact place and time of the interview.

· Present yourself professionally, both on the telephone and in person. Explain what topics will be included and specify the length of the interview.

b. During the interview:

· Begin the interview with a brief, non-business conversation to establish rapport. Objects in the person’s office may offer clues as to the person’s interests or background (school affiliation, particular sports interest, and so forth) and may be a good basis for opening conversation.

· Try to make the interview conversational. Use the prepared questions as a guideline rather than as a script.

· Taking notes to review after the interview will help you to get the maximum benefit from the interview.

· Encourage the presentation of more detailed information if the person being interviewed is speaking in generalities.

· Clarify any statements that you do not quite understand.

· At the end of an interview, ask for a contact phone number in case you have further questions.

c.
Issues relevant to this particular interview:

· Most companies will need tools to support three general categories of users:

1. Query/Reporting (Q/R) tools support queries and reports against operational data and data warehouses. They are often used by knowledge workers.

2. On-line Analytical Processing (OLAP) tools provide the summarized information for middle management and business analysts.

3. Executive Information System (EIS) tools, often implemented by adding a front end to OLAP tools, provide high-level reporting and monitoring capabilities for senior management.

· Applications that use embedded SQL statements to access and manipulate data are developed using different host languages (Ada, COBOL, C, etc.). There are different means for SQL integration into a language, direct embedded support like PowerBuilder, and indirect embedded support through a pre-processor like zTools (an automatic code generation precompiler for SYBASE that automatically creates source code to link the application program to stored procedures on the SYBASE server using DB-Library calls), or database API support. The downside to Application Programming Interface (API) support is that it takes many lines of tedious C code to equal each line of embedded SQL. To further complicate the issue, many companies are building intranets—private networks on the World Wide Web—to provide their employees, customers, and partners access to information in corporate data warehouses. Decision support tools need to accommodate these users, too.

2.
Use the strategies proposed in Exercise 1.

Note: With PL/SQL, you can use SQL statements to manipulate Oracle data and flow-of-control statements to process the data. Moreover, you can declare constants and variables, define subprograms (procedures and functions), and trap runtime errors. Thus, PL/SQL combines the data manipulating power of SQL with the data processing power of procedural languages.

3.
Use the strategies proposed in Exercise 1. Student answers will vary based on the company chosen, the background and experience of the interviewee, and the kinds of DBMS that the interviewee has used.

Project

Case Questions

1.
The student will need to establish what platform and version of SQL will be used to complete the project case. The Case Exercises solutions presented in the Instructor’s Manual is based on Oracle.

2. The student will need to identify any CASE tool such as Visible Analyst or Designer/ 2000.

3. One possible solution would be to write a program in a high-level language to generate ASCII files, as well as to generate ID fields randomly, and come up with a set of other standard fields. An even better solution would be to use a commercial product, such as TurboData, to automatically populate the tables. Some RDBMSs come with data load utilities to batch load many rows from an ASCII file.

4. The values used for test data help you to test the functionality of the database by checking for situations where things like range checks and other constraints (like primary key and referential integrity) do not make sense.

Case Exercises

1.
a.

 CREATE TABLE Patient_T

 (PatientNo

varchar(5) Primary Key,

 Name

varchar(35),

 FirstSeen

date,

 SocialWorker
varchar(35));

 CREATE TABLE Visit_T

 (PatientNo

varchar(5) references Patient_T(PatientNo),

 VisitDate

date,

 VisitTime

varchar(5),

 VisitReason

varchar(40),

 NewSymptoms
varchar(50),

 PainLevel

integer,

 constraint Visit_PK primary key (PatientNo,VisitDate,VisitTime);

b. This is left as an exercise for the student.

c.
i.
SELECT PatientNo, Name

FROM Patient_T

WHERE SocialWorker = ‘John Smith’;

ii.
SELECT SocialWorker, COUNT(*)

FROM Patient_T

GROUP BY SocialWorker;

iii.
SELECT MIN(PainLevel)

FROM Visit_T;

SELECT AVG(PainLevel)

FROM Visit_T;

2.
a.
Information from only one of the tables:

SELECT EmployeeID, DateHired FROM Employee_T

ORDER BY EmployeeID;

b.
 Aggregate information from one attribute in a table:

SELECT COUNT (*)

FROM Item_T

WHERE ItemDescription = ‘Television’;

SELECT AVERAGE(TotalCost) FROM Consumes_T;

c.
Various functions:

SELECT MIN (ItemCost)

FROM Item_T;

d.
Qualify results by category:

SELECT PhysicianID, COUNT(*)

FROM Performs_T

GROUP BY PhysicianID;

Project Assignments

P1.

a. The CREATE TABLE commands suggested here are simple versions and do not contain examples of setting additional parameters such as TABLESPACE, STORAGE, PCTFREE, or PCTUSED. These are optional, but would be used in defining tables for production systems in Oracle.

Further, NOT NULL constraints have not been implemented in this solution, but could be used in the table definitions to ensure data integrity. Also, please note that if you are not using Oracle 10g (or greater), the CHECK clause will cause an error in the execution of the SQL noted below.
CREATE TABLE Person_T (

PersonID

Varchar(5)

Constraint PerPersID_PK PRIMARY KEY,

PersonName

Varchar(35),

PersonStrAddress
Varchar(20),

PersonCity

Varchar(20),

PersonState

Char(2),

PersonZip

Varchar(10),

PersonHomePhone

Varchar(14),

PersonWorkPhone

Varchar(14),

PersonDOB

Date,

PersonEMail

Varchar(25),

IsPhysician

Char(1) check (IsPhysician in (‘Y’,’N’)),

IsEmployee

Char(1) check (IsEmployee in (‘Y’,’N’)),

IsVolunteer

Char(1) check (IsVolunteer in (‘Y’,’N’)),

IsPatient

Char(1) check (IsPatient in (‘Y’,’N’)));

CREATE TABLE Physician_T (

PhysicianID
Varchar(5) Constraint PhyPhysID_PK primary key

Constraint PhyPhysID_FK references Person_T(PersonID),

DEANo

Varchar(20),

PagerNo

Varchar(14),

Specialty

Varchar(20));

CREATE TABLE Patient_T (

PatientID

Varchar(5) Constraint PatPatID_PK primary key

Constraint PatPatID_FK references Person_T(PersonID),

ContactDate
Date,

ECLastName
Varchar(20),

ECFirstName
Varchar(20),

ECRelationship
Varchar(15),

ECAddress

Varchar(55),

ECPhone

Varchar(14),

CompanyName
Varchar(25),

PolicyNo

Varchar(20),

GroupNo

Varchar(15),

CompanyPhone
Varchar(14),

SubLastName
Varchar(20),

SubFirstName
Varchar(20),

SubRelationship
Varchar(15),

SubAddress

Varchar(55),

SubPhone

Varchar(14),

IsOutpatient
Char(1) check (IsOutpatient in (‘Y’,’N’)),

IsResident

Char(1) check (IsResident in (‘Y’,’N’)),

AdmitPhys

Varchar(5)

Constraint PatAdPhys_FK references Physician_T(PhysicianID),

ReferPhys

Varchar(5)

Constraint PatRefPhys_FK references Physician_T(PhysicianID));

CREATE TABLE Employee_T (
EmpID

Varchar(5) Constraint EmpEmpID_PK primary key

Constraint EmpEmpID_FK references Person_T(PersonID),

DateHired

Date,

EmpType

Char(1) check (EmpType in (‘N’,’S’,’T’));

CREATE TABLE Volunteer_T (

VolID

Varchar(5) Constraint VolVolID_PK primary key

Constraint Vol_VolID_FK references Person_T(PersonID),

HadFelony

Char(1) check (HadFelony in (‘Y’,’N’)),

FelonyExplanation Varchar(50),

VECLastName
Varchar(20),

VECFirstName
Varchar(20),

VECRelationship
Varchar(15),

VECAddress

Varchar(55),

VECPhone

Varchar(14),

VEmployer

Varchar(25),

VEmpoyerAddr
Varchar(55),

VEmployPosition
Varchar(20),

VEmployStartDate
Date,

VEmployEndDate

Date,

HadMVCHSvc
Char(1) check (HadMVCHSvc in (‘Y’,’N’)),

HadVolExp

Char(1) check (HadVolExp in (‘Y’,’N’)),

WhyVolunteer
Varchar(50));

CREATE TABLE Facility_T (

FacilityID

Varchar(10) Constraint FacFID_PK primary key,

FacilityName
Varchar(40));

CREATE TABLE Vendor_T (

VendorID

Varchar(5) Constraint VenVID_PK primary key,

VendorName

Varchar(40));

CREATE TABLE Item_T (

ItemNo

Varchar(5) Constraint ITMINO_PK primary key,

ItemDesc

Varchar(40),

UnitCost

Number(7,2));

CREATE TABLE Diagnosis_T (

DiagnosisCode
Varchar(5) Constraint DxDxCode_PK primary key,

DiagnosisName
Varchar(60));

CREATE TABLE Outpatient_T (

OPatientID
Varchar(5) Constraint OPOPID_PK primary key

Constraint OPOPID_FK references Patient_T(PatientID));

CREATE TABLE Visit_T (

VisitNo

Varchar(5) Constraint VISVNO_PK primary key,

OPatientID
Varchar(5)

Constraint VISOPID_FK references Outpatient_T(OPatientID),

VisitDate

Date,

VisitTime

Timestamp,

VisitReason
Varchar(50));

CREATE TABLE Nurse_T (

NurseID

Varchar(5) Constraint NURNID_PK primary key

Constraint NURNID_FK references Employee_T(EmpID),

CertDegree

Varchar(5),

StateLicenseNo
Varchar(15),

NurseSpecialty
Varchar(20),

NurseType

Char(1) check (NurseType in (‘R’,’L’));

CREATE TABLE RN_T (

RNID

Varchar(5) Constraint RNRNID_PK primary key

Constraint RNRNID_FK references Nurse_T(NurseID));

CREATE TABLE LPN_T (

LPNID

Varchar(5) Constraint LPNLPNID_PK primary key

Constraint LPNLPNID_FK references Nurse_T(NurseID)

Supervisor
Varchar(5) Constraint LPNRNID_FK references RN_T(RNID));

CREATE TABLE WorkUnit_T (

UnitName
Varchar(20) Constraint WUUName_PK primary key,

Floor

Varchar(3),

FacilityID
Varchar(10)

Constraint WUFID_FK references Facility_T(FacilityID),

UnitType

Char(2) check (UnitType in (‘CC’,’DU’));

CREATE TABLE CareCenter_T (
CCUnitName
Varchar(20) CCCCNAME_PK primary key

Constraint CCCCNAME_FK references WorkUnit_T(UnitName),

DayInCharge
Varchar(5) Constraint CCAMID_FK references RN_T(RNID)

NightInCharge
Varchar(5)

Constraint CCPMID_FK references RN_T(RNID));

CREATE TABLE Room_T (

RoomNo

Varchar(5) Constraint ROOMRNO_PK primary key,

CCUnitName Varchar(20)

Constraint ROOMCC_FK references CareCenter_T(CCUnitName));

CREATE TABLE Bed_T (

BedNo

Varchar(5),

RoomNo

Varchar(5)

Constraint BEDRNO_FK references Room_T(RoomNo),

Constraint BedPK primary key(RoomNo,BedNo));

CREATE TABLE Resident_T (

RPatientID
Varchar(5) Constraint RESRID_PK primary key

Constraint RESRID_FK references Patient_T(PatientID),

DateAdmitted
Date,

DateDischarged
Date,

BedNo

Varchar(3),

RoomNo

Varchar(5),

Constraint RESRoomBed_FK foreign key(RoomNo, BedNo)

references Bed_T(RoomNo, BedNo));

CREATE TABLE PhysicianDx_T (

PDID

Varchar(5) Constraint PDXPDID_PK primary key,

DiagnosisDate
Date,

DiagnosisTime
Timestamp,

DiagnosisCode
Varchar(5)

Constraint PDXDXCODE_FK references Diagnosis_T(DiagnosisCode),

PhysicianID
Varchar(5)

Constraint PDXPHYID_FK references Physician_T(PhysicianID)

PatientID

Varchar(5)

Constraint PDXPATID_FK references Patient_T(PatientID));

CREATE TABLE CCAssignment_T (

CCAID

Varchar(5) Constraint CCACCAID_PK primary key,

AssignStart
Date,

AssignEnd

Date,

HrsWorked

Number (4,2),

NurseID
Varchar(5)

Constraint CCANID_FK references Nurse_T(NurseID),

CCUnitName
Varchar(20)

Constraint CCACCNAME_FK references CareCenter_T(CCUnitName));

CREATE TABLE FieldCertification_T (

FCID
Varchar(5) Constraint FCFCID_PK primary key,

FCDescription
Varchar(30),

NurseID
Varchar(5)

Constraint FCNID_FK references Nurse_T(NurseID));

CREATE TABLE Assessment_T (

AssessmentID
Varchar(5) Constraint ASASID_PK primary key,

AssessmentDate
Date,

AssessmentTime
Timestamp,

Comments

Varchar(50),

PatientWeight
Number(3),

PatientBP

Varchar(7),

PatientPulse
Number(4),

PatientTemperature
Number(3,2)

PatientID

Varchar(5)

Constraint ASPATID_FK references Patient_T(PatientID),

NurseID

Varchar(5)

Constraint ASNID_FK references Nurse_T(NurseID));

CREATE TABLE Staff_T (

StaffID
Varchar(5) Constraint STFSTID_PK primary key

Constraint STFSTID_FK references Employee_T(EmpID),

JobClass
Varchar(3),

UnitName
Varchar(20)

Constraint STFUName_FK references WorkUnit_T(UnitName));

CREATE TABLE Technician_T (

TechnicianID
Varchar(5) Constraint TTID_PK primary key

Constraint TTID_FK references Employee_T(EmpID),

UnitName
Varchar(20)

Constraint TUName_FK references WorkUnit_T(UnitName));

CREATE TABLE TechnicianSkill_T (

TSID
Varchar(5) Constraint TSTSID_PK primary key,

TechnicianID Varchar(5)

Constraint TSTID_FK references Technician_T(TechnicianID),

TSSkill
Varchar(20));

CREATE TABLE DiagnosticUnit_T (

DXUnitName
Varchar(20) Constraint DUDXName_PK primary key

Constraint DUDXName_FK references WorkUnit_T(UnitName));

CREATE TABLE Treatment_T (

TrtCode
Varchar(5) Constraint TRTTCode_PK primary key,

TreatmentName
Varchar(30),

DXUnitName
Varchar(20)

Constraint TRTDXName_FK references DiagnosticUnit_T(DXUnitName));

CREATE TABLE Order_T (

OrderID

Varchar(5) Constraint ORORDID_PK primary key,

PatientID

Varchar(5)

Constraint ORPATID_FK references Patient_T(PatientID),

PhysicianID
Varchar(5)

Constraint ORPHYID_FK references Physician_T(PhysicianID),

ItemNo

Varchar(5)

Constraint ORITNO_FK references Item_T(ItemNo),

OrderDate

Date,

OrderTime

Timestamp);

CREATE TABLE TreatmentOrder_T (

TOID

Varchar(5) Constraint TOTOID_PK primary key,

TrtCode
Varchar(5)

Constraint TOTCODE_FK references Treatment_T(TrtCode),

Results

Varchar(50),

TrtDate
Date,

TrtTime
Timestamp,

OrderID
Varchar(5)

Constraint TOORID_FK references Order_T(OrderID));

CREATE TABLE ItemConsumption_T (

ICID
Varchar(5) Constraint ICICID_PK primary key,

ConsumeDate
Date,

ConsumeTime
Timestamp,

ConsumeQty

Number(3),

OrderID

Varchar(5)

Constraint ICORNO_FK references Order_T(OrderID),

ItemNo

Varchar(5)

Constraint ICITNO_FK references Item_T(ItemNo),

PatientID
Varchar(5)

Constraint ICPATID_FK references Patient_T(PatientID));

CREATE TABLE ItemBilling_T (

IBID

Varchar(5) Constraint IBIBID_PK primary key,

StartDate
Date,

EndDate
Date,

Cost

Number (9,2),

ItemNo

Varchar(5)

Constraint IBITNO_FK references Item_T(ItemNo),

RoomNo

Varchar(5)

Constraint IBRNO_FK references Room_T(RoomNo),

PatientID
Varchar(5)

Constraint IBPATID_FK references Patient_T(PatientID));

CREATE TABLE Inventory_T (

InvID

Varchar (5) Constraint INVINVID_PK primary key,

ItemNo

Varchar(5)

Constraint INVITNO_FK references Item_T(ItemNo),

VendorID
Varchar(5)

Constraint INVVID_FK references Vendor_T(VendorID));

CREATE TABLE Schedule_T (

ScheduleID

Varchar(5) Constraint SCHSCHID_PK primary key,

SchedBegin

Date,

SchedEnd

Date,

PhysicianID
Varchar(5)

Constraint SCHPHYID_FK references Physician_T(PhysicianID),

FacilityID

Varchar(10)

Constraint SCHFID_FK references Facility_T(FacilityID));

CREATE TABLE VolMVCHService (

VMSID

Varchar(5) Constraint VMSVMSID_PK primary key,

MVCHServiceInfo
Varchar(25),

VolID

Varchar (5)

Constraint VMSVID_FK references Volunteer_T(VolID));

CREATE TABLE VolRefInfo (

VRIID

Varchar(5) Constraint VRIVRID_PK primary key,

VRILastName
Varchar(20),

VRIFirstName
Varchar(20),

VRIRelationship
Varchar(15),

VRIPhone

Varchar(14),

VRIAddress

Varchar(20),

VRICity

Varchar(20),

VRIState

Varchar(2),

VRIZip

Varchar(10),

VolID

Varchar (5)

Constraint VRIVID_FK references Volunteer_T(VolID));

CREATE TABLE VolExperience_T (

VEID

Varchar(5) Constraint VEVEID_PK primary key,

VolunteerExpInfo
Varchar(25),

VolID

Varchar (5)

Constraint VEVID_FK references Volunteer_T(VolID));

CREATE TABLE VolLanguage_T (

VLID

Varchar(5) Constraint VLVLID_PK primary key,

Language
Varchar(15),

VolID

Varchar (5)

Constraint VLVID_FK references Volunteer_T(VolID));

CREATE TABLE VolSkill_T (

VSID

Varchar(5) Constraint VSVSID_PK primary key,

Skill

Varchar(25),

VolID

Varchar (5)

Constraint VSVID_FK references Volunteer_T(VolID));

CREATE TABLE VolInterest_T (

VIID

Varchar(5) Constraint VIVID_PK primary key,

Interest
Varchar(25),

VolID

Varchar (5)

Constraint VIVID_FK references Volunteer_T(VolID));

CREATE TABLE VolAvailability_T (

VAID

Varchar(5) Constraint VAVAID_PK primary key,

DayOfWeek
Varchar(8),

PortionOfDay
Varchar(15),

VolID

Varchar (5)

Constraint VAVID_FK references Volunteer_T(VolID));

CREATE TABLE VolServHistory_T (

VSHID
Varchar(5) Constraint VSHVSHID_PK primary key,

ServiceBeginDate
Date,

ServiceEndDate

Date,

ServiceHrsWorked
Varchar(3),

VolID
Varchar(5) Constraint VSH_VID_FK references Volunteer_T(VolID),

UnitName
Varchar(15)

Constraint VSHUName_FK references WorkUnit_T(UnitName),

PhysicianID Varchar(5)

Constraint VSHPhyID_FK references Physician_T(Physician_ID),

EmpID
Varchar(5)

Constraint VSHEmpID_FK references Employee_T(EmpID));

P1b. The following commands will create secondary indexes based upon specifications

from Chapter 6:

CREATE INDEX DrDx_IDX on PhysicianDx_T(PhysicianID);

CREATE INDEX DxCode_IDX on PhysicianDx_T(DiagnosisCode);

CREATE INDEX PatientDx_IDX on PhysicianDx_T (PatientID);

CREATE INDEX ResDateAdm_IDX on Resident_T(DateAdmitted);

CREATE INDEX ResDateDischg_IDX on Resident_T(DateDischarged);

CREATE INDEX TrtOrderDate_IDX on TreatmentOrder_T(TrtDate);

CREATE INDEX ODate_IDX on Order_T(OrderDate);

CREATE INDEX ItemCost_IDX on Item_T(ItemUnitCost);

CREATE INDEX ConsumeQty_IDX on ItemConsumption_T(ConsumeQty);

P2 and P3. These are left as student exercises. Be sure that students include queries that utilize the GROUP BY clause as well as aggregate functions.

Copyright © 2013 Pearson Education, Inc. publishing as Prentice Hall
Copyright © 2013 Pearson Education, Inc. publishing as Prentice Hall

